DOI QR코드

DOI QR Code

석유계 피치를 사용한 리튬전지 음극소재의 전기화학적 특성

Electrochemical Characteristics of Lithium Battery Anode Materials Using Petroleum Pitches

  • Hwang, Jin Woong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2017.07.04
  • 심사 : 2017.07.27
  • 발행 : 2017.10.10

초록

본 연구에서는 PFO (pyrolyzed fuel oil)의 개질을 통해 탄소전구체(피치)를 제조한 후, 유기용매를 통한 분자량 조절을 하고 탄화하여 음극소재를 제조하였다. 리튬이차전지 음극소재의 전기화학적 특성은 석유계 피치를 사용하여 조사되었다. 사용된 세 종류의 피치는 3903, 4001, 4002이며, 각 PFO를 $390^{\circ}C$ 3 h, $400^{\circ}C$ 1 h, $400^{\circ}C$ 2 h 열처리 하여 제조하였다. 제조된 헥산 불용성 피치의 물리적 특성은 XRD, TGA, GPC, SEM으로 분석되었다. 음극소재로서의 피치의 전기화학적 특성은 충 방전, 순환전압전류, 임피던스, 속도 테스트를 통해 조사되었다. 4001 피치를 통하여 제조된 음극소재와 $LiPF_6$ (EC : DMC = 1 : 1 vol%, VC 3 wt%)를 사용하여 제조한 반쪽 전지는 향상된 초기용량(310 mAh/g)을 보였으며, 초기 효율(82%), 2 C/0.1 C 속도특성(90%), 용량 유지율 85%의 특성을 보였다. 본 연구에서 제조된 피치는 사이클 특성과 속도특성이 향상됨을 알 수 있었다.

In this study, the molecular weight controlled pitches derived from pyrolyzed fuel oil (PFO) were prepared using solvent extraction and were carbonized. Electrochemical characteristics of lithium battery anode materials were investigated using these petroleum pitches. Three pitch samples prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). The prepared hexane insoluble pitches were analysed by XRD, TGA, SEM and Gel permeation Chromatography (GPC). The electrochemical characteristics of the PFO-derived pitch as an anode material were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4001) and the electrolyte of $LiPF_6$ in organic solvents (EC : DMC = 1 : 1 vol%, VC 3 wt%) has better initial capacity (310 mAh/g) than that of other pitch coin cells. Also, this carbon anode showd a high initial efficiency of 82%, retention rate capability at 2 C/0.1 C of 90% and cycle retention of 85%. It was found that modified pitches improved the cycling and rate capacity performance.

키워드

참고문헌

  1. J. Y. Park, M. Z. Jung, and J. D. Lee, Electrochemical characteristics of silicon/carbon composites for anode materials of lithium ion batteries, Appl. Chem. Eng., 26, 80-85 (2015). https://doi.org/10.14478/ace.2014.1119
  2. B. Xu, D. Qian, Z. Wang, and Y. S. Meng, Recent progress in advanced materials for lithium ion batteries, Mater. Sci. Eng., 73, 51-65 (2012). https://doi.org/10.1016/j.mser.2012.05.003
  3. K. S. Eom, T. Joshi, A. Bordes, I. Do, and T. Fuller, The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode, J. Power Sources, 249, 118-124 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.087
  4. H. S. Ko, J. E. Choi, and J. D. Lee, Electrochemical characteristics of lithium ion battery anode materials of Graphite/$SiO_2$, Appl. Chem. Eng., 25, 592-597 (2014). https://doi.org/10.14478/ace.2014.1094
  5. H. Q. Wang, G. H. Yang, L. S. Cui, Z. S. Li, Z. X. Yan, X. H. Zhang, Y. G. Huang, and Q. Y. Li, Controlled synthesis of three-dimensional interconnected graphene-like nanosheets from graphite microspheres as high-performance anodes for lithium-ion batteries, J. Mater. Chem. A, 3, 21298-21307 (2015). https://doi.org/10.1039/C5TA04882F
  6. L. Y. Wang, X. Bai, Y. Wu, N. Lun, Y. X. Qi, and Y. J. Bai, Improving the Li-ion storage performance of commercial $TiO_2$ by coating with soft carbon derived from pitch, Electrochim. Acta, 212, 155-161 (2016). https://doi.org/10.1016/j.electacta.2016.06.160
  7. J. G. Kim, J. H. Kim, B. J. Song, Y. P. Jeon, C. W. Lee, Y. S. Lee, and J. S. Im, Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF, Fuel, 167, 25-30 (2016). https://doi.org/10.1016/j.fuel.2015.11.050
  8. A. Cristadoro, S. U. Kulkarni, W. A. Burgess, E. G. Cervo, H. J. Rӓder, K. Mullen, D. A. Bruce, and M. C. Thies, Structural characterization of the oligomeric constituents of petroleum pitches, Carbon, 47, 2358-2370 (2009). https://doi.org/10.1016/j.carbon.2009.04.027
  9. J. G. Kim, F. Liu, C. W. Lee, Y. S. Lee, and J. S. Im, Boron-doped carbon prepared from PFO as a lithium-ion battery anode, Solid State Sci., 34, 38-42 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.05.005
  10. Y. N. Jo, M. S. Park, E. Y. Lee, J. G. Kim, K. J. Hong, S. I. Lee, H. Y. Jeong, G. H. Ryu, Z. Lee, and Y. J. Kim, Increasing reversible capacity of soft carbon anode by phosphoric acid treatment, Electrochim. Acta, 146, 630-637 (2014). https://doi.org/10.1016/j.electacta.2014.09.088
  11. Y. N. Jo, E. Y. Lee, M. S. Park, K. J. Hong, S. I. Lee, H. Y. Jeong, Z. Lee, S. M. Oh, and Y. J. Kim, A study on the $H_3PO_4$-treated soft carbon as anode materials for lithium ion batteries, J. Korean Electrochem. Soc., 15, 207-215 (2012). https://doi.org/10.5229/JKES.2012.15.4.207
  12. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 270, 590-593 (1995). https://doi.org/10.1126/science.270.5236.590
  13. N. Kobayashi, Y. Inden, and M. Endo, Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery, J. Power Sources, 326, 235-241 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.117
  14. S. Yoon, H. Kim, and S. M. Oh, Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries, J. Power Sources, 94, 68-73 (2001). https://doi.org/10.1016/S0378-7753(00)00601-7
  15. K. J. Kim, T. S. Lee, H. G. Kim, S. H. Lim, and S. M. Lee, A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries, Electrochim. Acta, 135, 27-34 (2014). https://doi.org/10.1016/j.electacta.2014.04.171
  16. Y. J. Han, J. Kim, J. S. Yeo, J. C. An, I. P. Hong, K. Nakabayashi, J. Miyawaki, J. D. Jung, and S. H. Yoon, Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch, Carbon, 94, 432-438 (2015). https://doi.org/10.1016/j.carbon.2015.07.030
  17. J. G. Kim, J. H. Kim, B. J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016). https://doi.org/10.1016/j.jiec.2016.02.014
  18. D. W. Chung, P. R. Shearing, N. P. Brandon, S. J. Harris, and R. E. Garcia, Particle size polydispersity in Li-ion batteries, J. Electrochem. Soc., 161, 422-430 (2014).
  19. B. H. Kim, J. H. Kim, J. G. Kim, J. S. Im, C. W. Lee, and S. Kim, Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries, J. Ind. Eng. Chem., 45, 99-104 (2017). https://doi.org/10.1016/j.jiec.2016.09.008