Browse > Article
http://dx.doi.org/10.14478/ace.2017.1062

Electrochemical Characteristics of Lithium Battery Anode Materials Using Petroleum Pitches  

Hwang, Jin Woong (Department of Chemical Engineering, Chungbuk National University)
Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.5, 2017 , pp. 534-538 More about this Journal
Abstract
In this study, the molecular weight controlled pitches derived from pyrolyzed fuel oil (PFO) were prepared using solvent extraction and were carbonized. Electrochemical characteristics of lithium battery anode materials were investigated using these petroleum pitches. Three pitch samples prepared by the thermal reaction were 3903 (at $390^{\circ}C$ for 3 h), 4001 (at $400^{\circ}C$ for 1 h) and 4002 (at $400^{\circ}C$ for 2 h). The prepared hexane insoluble pitches were analysed by XRD, TGA, SEM and Gel permeation Chromatography (GPC). The electrochemical characteristics of the PFO-derived pitch as an anode material were investigated by constant current charge/discharge, cyclic voltammetry and electrochemical impedance tests. The coin cell using pitch (4001) and the electrolyte of $LiPF_6$ in organic solvents (EC : DMC = 1 : 1 vol%, VC 3 wt%) has better initial capacity (310 mAh/g) than that of other pitch coin cells. Also, this carbon anode showd a high initial efficiency of 82%, retention rate capability at 2 C/0.1 C of 90% and cycle retention of 85%. It was found that modified pitches improved the cycling and rate capacity performance.
Keywords
PFO; petroleum pitch; anode; lithium ion battery; hexane;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Y. Park, M. Z. Jung, and J. D. Lee, Electrochemical characteristics of silicon/carbon composites for anode materials of lithium ion batteries, Appl. Chem. Eng., 26, 80-85 (2015).   DOI
2 B. Xu, D. Qian, Z. Wang, and Y. S. Meng, Recent progress in advanced materials for lithium ion batteries, Mater. Sci. Eng., 73, 51-65 (2012).   DOI
3 K. S. Eom, T. Joshi, A. Bordes, I. Do, and T. Fuller, The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode, J. Power Sources, 249, 118-124 (2014).   DOI
4 H. S. Ko, J. E. Choi, and J. D. Lee, Electrochemical characteristics of lithium ion battery anode materials of Graphite/$SiO_2$, Appl. Chem. Eng., 25, 592-597 (2014).   DOI
5 H. Q. Wang, G. H. Yang, L. S. Cui, Z. S. Li, Z. X. Yan, X. H. Zhang, Y. G. Huang, and Q. Y. Li, Controlled synthesis of three-dimensional interconnected graphene-like nanosheets from graphite microspheres as high-performance anodes for lithium-ion batteries, J. Mater. Chem. A, 3, 21298-21307 (2015).   DOI
6 J. G. Kim, F. Liu, C. W. Lee, Y. S. Lee, and J. S. Im, Boron-doped carbon prepared from PFO as a lithium-ion battery anode, Solid State Sci., 34, 38-42 (2014).   DOI
7 L. Y. Wang, X. Bai, Y. Wu, N. Lun, Y. X. Qi, and Y. J. Bai, Improving the Li-ion storage performance of commercial $TiO_2$ by coating with soft carbon derived from pitch, Electrochim. Acta, 212, 155-161 (2016).   DOI
8 J. G. Kim, J. H. Kim, B. J. Song, Y. P. Jeon, C. W. Lee, Y. S. Lee, and J. S. Im, Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF, Fuel, 167, 25-30 (2016).   DOI
9 A. Cristadoro, S. U. Kulkarni, W. A. Burgess, E. G. Cervo, H. J. Rӓder, K. Mullen, D. A. Bruce, and M. C. Thies, Structural characterization of the oligomeric constituents of petroleum pitches, Carbon, 47, 2358-2370 (2009).   DOI
10 Y. N. Jo, M. S. Park, E. Y. Lee, J. G. Kim, K. J. Hong, S. I. Lee, H. Y. Jeong, G. H. Ryu, Z. Lee, and Y. J. Kim, Increasing reversible capacity of soft carbon anode by phosphoric acid treatment, Electrochim. Acta, 146, 630-637 (2014).   DOI
11 Y. N. Jo, E. Y. Lee, M. S. Park, K. J. Hong, S. I. Lee, H. Y. Jeong, Z. Lee, S. M. Oh, and Y. J. Kim, A study on the $H_3PO_4$-treated soft carbon as anode materials for lithium ion batteries, J. Korean Electrochem. Soc., 15, 207-215 (2012).   DOI
12 J. G. Kim, J. H. Kim, B. J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016).   DOI
13 J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 270, 590-593 (1995).   DOI
14 N. Kobayashi, Y. Inden, and M. Endo, Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery, J. Power Sources, 326, 235-241 (2016).   DOI
15 S. Yoon, H. Kim, and S. M. Oh, Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries, J. Power Sources, 94, 68-73 (2001).   DOI
16 K. J. Kim, T. S. Lee, H. G. Kim, S. H. Lim, and S. M. Lee, A hard carbon/microcrystalline graphite/carbon composite with a core-shell structure as novel anode materials for lithium-ion batteries, Electrochim. Acta, 135, 27-34 (2014).   DOI
17 Y. J. Han, J. Kim, J. S. Yeo, J. C. An, I. P. Hong, K. Nakabayashi, J. Miyawaki, J. D. Jung, and S. H. Yoon, Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch, Carbon, 94, 432-438 (2015).   DOI
18 D. W. Chung, P. R. Shearing, N. P. Brandon, S. J. Harris, and R. E. Garcia, Particle size polydispersity in Li-ion batteries, J. Electrochem. Soc., 161, 422-430 (2014).
19 B. H. Kim, J. H. Kim, J. G. Kim, J. S. Im, C. W. Lee, and S. Kim, Controlling the electrochemical properties of an anode prepared from pitch-based soft carbon for Li-ion batteries, J. Ind. Eng. Chem., 45, 99-104 (2017).   DOI