DOI QR코드

DOI QR Code

Electrochemical Performances of Petroleum Pitch Coated Si/C Fiber Using Electrospinning

전기방사를 이용한 석유계 피치가 코팅된 Si/C Fiber의 전기화학적 성능

  • Youn, Jae Woong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 윤재웅 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2022.01.24
  • Accepted : 2022.02.28
  • Published : 2022.08.01

Abstract

In this study, Silicon and petroleum pitch were coated on the surface of Si/C fiber manufactured using electrospinning to improve the electrochemical performances. SiO2/PAN fiber was prepared by electrospinning with TEOS and PAN at various ratios dissolved in DMF. The characteristics of carbonization, reduction, and pitch coating processes were investigated for the optimal process of the pitch coated Si/C fiber anode composite. Anode composite prepared with TEOS/PAN = 4/6 (CR-46) after carbonization and reduction process has a capacity of 657 mAh/g. To improve capacity and stability, Si powder and PFO pitch were coated at the surface of CR-46. When the pitch composition was fixed at 10 wt%, it was found that the capacity increased as the weight ratio of silicon increased, but the stability decreased. The pitch coated Si/C fiber composite with 10 wt% silicon has high capacity of 982.4 mAh/g and capacity retention of 86.1%. In the test to evaluate rate performance, the rate capability was 80.2% (5C/0.1C).

본 연구에서는 전기방사를 이용해 제조한 Si/C Fiber 표면에 실리콘과 석유계 피치를 코팅하여 전지의 용량 안정성을 개선하고자 하였다. TEOS와 PAN을 전기방사 Fiber의 전구체로 사용하여 DMF에 용해해 방사하였다. 전기 방사된 Fiber는 탄화, 환원, 피치 코팅 공정의 특성을 분석하여 최적 공정을 조사하였으며, TEOS와 PAN의 비율에 따라 제조한 음극 소재의 성능을 평가하였다. 탄화/환원 공정 후의 TEOS : PAN = 4 : 6 (CR-46)로 제조된 음극 복합 소재는 657 mAh/g의 용량을 보여주었다. 전기화학적 성능을 개선하기 위하여, CR-46 표면에 실리콘과 석유계 피치를 코팅하였다. 피치의 조성을 10 wt%로 고정하였을 때, 실리콘의 함량이 증가할수록 용량은 개선되지만, 안정성은 저하됨을 알 수 있었다. 실리콘의 조성을 10 wt%로 제조한 음극 복합 소재는 982.4 mAh/g의 높은 용량과 86.1%의 용량 안정성을 확인할 수 있었다. 고속 충·방전 특성을 분석하기 위한 율속 테스트에서는 80.2%의 용량비(5C/0.1C)를 나타내었다.

Keywords

Acknowledgement

이 논문은 한국산업기술평가원의 2021년 "석유계 기반 인조흑연 음극재 제조기술 개발"지원 사업으로 수행되었으며, 이에 감사드립니다.

References

  1. Liang, G., Qin, X., Zou, J., Luo, L., Wang, Y., Wu, M., Zhu, H., Chen, G., Kang, F. and Li, B., "Electrosprayed Silicon-embedded Porous Carbon Microspheres as Lithium-ion Battery Anodes with Exceptional Rate Capacities," CARBON, 127, 424-431(2018). https://doi.org/10.1016/j.carbon.2017.11.013
  2. Wachtler, M., Besenhard, J. O. and Winter, M., "Tin and Tin-Based Intermetallics as New Anode Materials for Lithium-Ion Cells," J. Power Sources, 94, 189-193(2001). https://doi.org/10.1016/S0378-7753(00)00585-1
  3. Wu, H., Chan, G., Choi, J. W., Ryu, L., Yao, Y., McDowell, M. T., Lee, S. W., Jackson, A., Yang, Y., Hu, L. and Cui, Y., "Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes Through Solid-Lectrolyte Interphase Control," Nat. Nanotechnol., 7(5), 310-315(2012). https://doi.org/10.1038/nnano.2012.35
  4. Sohn, M., Kim, D. S., Park, H. I., Kim, J. H. and Kim, H., "Porous Silicon-Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes," Electrochim. Acta, 196, 197-205(2016). https://doi.org/10.1016/j.electacta.2016.02.101
  5. Antitomaso, P., Fraisse, B., Stievano, L., Biscaglia, S., Perrot, D. A., Girard, P., Sougrati, M. T. and Monconduit, L., "SnSb Electrodes for Li-Ion Batteries: The Electrochemical Mechanism and Capacity Fading Origins Elucidated by Using Operando Techniques," J. Mater. Chem. A, 5, 6546-6555(2017). https://doi.org/10.1039/C6TA10138K
  6. Huanga, L., Wei, H. B., Ke, F. S., Fan, X. Y., Li, J. T. and Sun, S. G., "Electrodeposition and Lithium Storage Performance of Three-Dimensional Porous Reticular Sn-Ni Alloy Electrodes," Electrochim. Acta, 54, 2693-2698(2009). https://doi.org/10.1016/j.electacta.2008.11.044
  7. Reneker, D. H. and Yarin, A. L., "Electrospinning Jets and Polymer Nanofibers," Polymer, 49(10), 2387-2425(2008). https://doi.org/10.1016/j.polymer.2008.02.002
  8. Jung, J. W., Ryu, W. H., Shin, J., Park, K., and Kim, I. D., "Glassy Metal Alloy Nanofiber Anodes Employing Graphene Wrapping Layer: Toward Ultralong-cycle-life Lithium-ion Batteries," ACS nano, 9(7), 6717-6727(2015). https://doi.org/10.1021/acsnano.5b01402
  9. Ahn, M., Hwang, S., Han, S., Choi, M., Byun, D. and Lee, W., "Porous an Hollow Nanofibers for Solid Oxide Fuel Cell Electrodes," Korean J Chem Eng, 37(8), 1371-1378(2020). https://doi.org/10.1007/s11814-020-0610-6
  10. Teo, W. E. and Ramakrishna, S., "A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology," Nanotechnology, 17(14), R89(2006). https://doi.org/10.1088/0957-4484/17/14/R01
  11. Kim, H.-Y. and Ju, Y.-W., "Influence of Post-heat Treatment on Photocatalytic Activity in Metal-embedded TiO2 Nanofibers," Korean J Chem Eng, 38(7), 1522-1528(2021). https://doi.org/10.1007/s11814-021-0800-x
  12. Dahn, J. R., Zheng, T., Liu, Y. and Xue, J. S., "Mechanisms for Lithium Insertion in Carbonaceous Materials," Science, 270, 590(1995). https://doi.org/10.1126/science.270.5236.590
  13. Zhang, X., Qu, H., Ji, W., Zheng, D., Ding, T., Abegglen, C., Qiu, D. and Qu, D., "Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-ion Batteries," ACS Appl. Mater. Interfaces, 12(10), 11589-11599(2020). https://doi.org/10.1021/acsami.9b21417
  14. Jo, Y. J. and Lee, J. D., "Electrochemical Characteristics of Artificial Graphite Anode Coated with Petroleum Pitch Treated by Solvent," Korean J Chem Eng., 57(1) 5-10(2019).
  15. Rahaman, M. S. A., Ismail, A. F. and Mustafa, A., "A Review of Heat Treatment on Polyacrylonitrile Fiber," Polym. Degrad. Stab., 92(8), 1421-1432(2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.023
  16. Lai, J., Guo, H., Wang, Z., Li, X., Zhang, X., Wu, F. and Yue, P., "Preparation and Characterization of Flake Graphite/Silicon/Carbon Spherical Composite as Anode Materials for Lithiumion Batteries," J. Alloys Compd., 530, 30-35(2012). https://doi.org/10.1016/j.jallcom.2012.03.096
  17. Jung, M. Z., Park, J. Y. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material," Korean Chem. Eng. Res., 54(1), 16-21(2016). https://doi.org/10.9713/kcer.2016.54.1.16
  18. Zuo, X., Wang, X., Xia, Y., Yin, S., Ji, Q., Yang, Z. and Cheng, Y. J., "Silicon/carbon Lithium-ion Battery Anode with 3D Hierarchical Macro-/mesoporous Silicon Network: Self-templating Synthesis via Magnesiothermic Reduction of Silica/carbon Composite," J. Power Sources, 412, 93-104(2019). https://doi.org/10.1016/j.jpowsour.2018.11.039
  19. Pirzada, T., Arvidson, S. A., Saquing, C. D., Shah, S. S. and Khan, S. A., "Hybrid Silica-PVA Nanofibers via Sol-gel Electrospinning," Langmuir, 28(13), 5834-5844(2012). https://doi.org/10.1021/la300049j
  20. Ko, H. S., Choi, J. E. and Lee, J. D., "Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2", Appl. Chem. Eng., 25, 592-597(2014). https://doi.org/10.14478/ACE.2014.1094
  21. Wang, Y., Wen, X., Chen, J. and Wang, S., "Foamed Mesoporous Carbon/silicon Composite Nanofiber Anode for Lithium Ion Batteries," Journal of Power Sources, 281, 285-292(2015). https://doi.org/10.1016/j.jpowsour.2015.01.184
  22. Jo, Y. J. and Lee, J. D., "Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithiumion Batteries," Korean Chem. Eng. Res., 56(3), 320-326(2018).
  23. Lee, J. H., Kim, S. H., Kim, W. and Choi, W. J., "A Research on the Estimation Method for the SOC of the Lithium Batteries Using AC Impedance," TKPE, 14(6), 457-465(2009).
  24. Oh, S. H., Park, S. M., Kang, D. W., Kang, Y. C., and Cho, J. S., "Fibrous Network of Highly Integrated Carbon Nanotubes/MoO3 Composite Bundles Anchored with MoO3 Nanoplates for Superior Lithium Ion Battery Anodes," J Ind Eng Chem, 83, 438-448(2020). https://doi.org/10.1016/j.jiec.2019.12.017