• Title/Summary/Keyword: Petroleum oil

Search Result 667, Processing Time 0.023 seconds

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

Quality Monitoring for Domestic Distributing Engine Oil (국내 유통 엔진오일 품질 모니터링)

  • Lim, Young-Kwan;Lee, Eun-Yul;Lee, Kyoung-Mook;Na, Yong-Gyu;Kim, Jong-Ryeol
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.289-297
    • /
    • 2018
  • The vehicle lubricant has captured 35% of the total lubricant market while the engine oil possessed 77% of the vehicle lubricant market in Korea. The suitable quality management of circulating engine oil is thus required for the driver and engine protection. But, KS and synthetic engine oil products (containing over 30% synthetic oil) are exempt to any quality inspections under Petroleum and Alternative Fuel Business Act. In this study, our research group investigated the quality monitoring of 30 kinds of domestic distributing synthetic engine oils. Two kinds of the engine oil showed an off specification from the test results; one engine oil is an imported and the other is a KS synthetic one. Also, the pattern of engine oils were analyzed using SIMDIST (simulated distillation) and the most engine oils had a broad carbon number spectrum, which is a typical of mineral oils except several imported products. Thus, we concluded that relevant laws for the proper quality management of synthetic oils and KS products are needed to be established for preventing consumer's damages.

Estimation Technique of Volatile Hazardous Air Pollutants(HAPs) Emitted from Petroleum Industrial Process/Equipment (석유정제산업 공정과 공정장비에 기인한 휘발성 유해 대기오염물질(HAPs)의 배출량 산정기법)

  • Jo, Wan Geun;Gwon, Gi Dong;Dong, Jong In;Gang, Gyeong Hui
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.703-710
    • /
    • 2004
  • Petroleum refineries have been considered as an important emission source for atmospheric volatile hazardous air pollutants(HAPs). The emission source includes petroleum refinery processes and process equipment. The control strategy for volatile HAPs requires emission estimations of these pollutants. However, systematic methods of volatile HAPs emission from petroleum refineries have not yet been established. Accordingly, present study surveyed the estimation method of volatile HAPs emitted from the petroleum refinery processes and process equipment. The emission estimation methods for the petroleum refinery processes are applied for 11 petroleum refining facilities: fluidized catalytic cracking, thermal cracking, moving bed catalytic cracking, compressed engine, blowdown system, vacuum distilled column condensator, natural gas or distilled boiler, natural gas or distilled heater, oil boiler, oil heater and flare. Four emission estimation methods applied for the petroleum refinery process equipment are as follows: average emission factor approach, screening ranges approach, EPA correlation approach and unit-specific correlation approach. The process equipment for which emission factors are available are valves, pump seals, connectors, flanges and open-ended lines.

The Study of Correlation between Biodiesel Components and Derived Cetane Number (바이오디젤 구성분자와 유도세탄가 상관관계 연구)

  • Lim, Young-Kwan;Park, So-Ra;Kim, Jong-Ryeol;Yim, Eui-Soon;Jung, Choong-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.122-129
    • /
    • 2011
  • Biodiesel produced from triglyceride which is main component of animal fats and vegetable oils by methanolysis was known for remarkable cetane number. In this study, the derived cetane number of 3 kinds of biodiesel came from vegetable oils such as soybean oil, palm oil, and perilla oil and 2 kind of biodiesel which were produced from beef tallow and pork lard were analyzed using IQT (Ignition quality tester). In IQT test result, the derived cetane number of palm- , beef tallow- and pork lard's biodiesel were more excellent than other biodiesels. After analysis of biodiesel composed molecular by gas chromatography-mass and determination of the derived cetane number of pure biodiesel components using IQT, we have found that the low olefin contented and long alkyl chained biodiesel have excellent derived cetane number.

Characteristics of waterflood at low rate in low permeability sandstones based on the CT scanning

  • Mo, S.Y.;Lei, Q.;Lei, G.;Gai, S.H.;Liu, Z.K.
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.344-351
    • /
    • 2018
  • It is reported that the flooding rate in low permeability sandstones is low and the oil recovery is hard to increase after water breakthrough. Understanding characteristics of waterflood is hence important for the recovery improvement. In this work, flooding tests on low permeability sandstones were conducted. The corresponding flooding characteristics were investigated by means of CT scanning and Nuclear Magnetic Resonance. Effects of irreducible water and different rates were also discussed in detail. Experimental results reveal a piston-like displacement at a low rate in low permeability samples. The saturation profile is steep and almost vertical to the forward direction. The results at a low rate confirm that once water broke through, increasing the flooding rate or flooding time can hardly reduce the remaining oil inside the sample. It is probably due to the high pore-throat ratio proven by rate-controlled mercury. Results also confirm that the presence of initial water enhanced sweep efficiency substantially. On one hand, because water had previously occupied the small pores, the subsequent oil can only invade relatively large pores and became more movable. On the other hand, stable collars can not form due to the steep front, which may suppress the snap-off.

The study on Physicochemical Properties of vehicle Engine Oil in Korea (국내 자동차용 엔진오일의 물리·화학적 특성연구)

  • Kim, Shin;Kim, Jae-Kon;Yim, Eui-Soon;Lim, Youn-Sung;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.194-201
    • /
    • 2015
  • A lubricant used in the transport sector have been developed for the purpose of improving vehicle performance. To improve the engine oil for some terrible conditions, various studies have been conducted to improve vehicle performance. There are limitations in development of lubricant for the economic point, but various additives have beed developed in the technical point. Recently, government tried to prohibit reckless use of additives in base oil because of the environmental issues. The institutionalized quality standards of the additives has been estabilished. In this study, physicochemical properties and environmental effect of vehicle engine oils in domestic sector were investigated.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Comparative adsorption of crude oil using mango (Mangnifera indica) shell and mango shell activated carbon

  • Olufemi, Babatope Abimbola;Otolorin, Funmilayo
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.384-392
    • /
    • 2017
  • Mango shell (MS) and mango shell activated carbon (MSAC) was used to adsorb crude oil from water at various experimental conditions. The MSAC was prepared by carbonization at $450^{\circ}C$ and chemical activation using strong $H_3PO_4$ acid. The adsorbents were characterized with Fourier Transform Infrared spectroscopy. Investigations carried out included the effects of parametric variations of different adsorbate dose, adsorbent dose, time, temperature, pH and mixing speed on the adsorption of crude oil. The equilibrium isotherm for the adsorption process was determined using Langmuir, Freundlich, Temkin and Dubinin Radushkevich isotherm models. Temkin isotherm was found to fit the equilibrium data reasonably well than others. The result demonstrated that MSAC was more effective for crude oil adsorption than raw mango shell. Optimum conditions were also presented. The enhanced effect from activation was justified statistically using Analysis of Variance and Bonferroni-Holm Posthoc significance test. The pseudo first order kinetics gave a better fit for crude oil adsorption with both MS and MSAC.

Finding Loopholes in Sanctions: Effects of Sanctions on North Korea's Refined Oil Prices

  • KIM, KYOOCHUL
    • KDI Journal of Economic Policy
    • /
    • v.42 no.4
    • /
    • pp.1-25
    • /
    • 2020
  • The international community's sanctions against North Korea, triggered by North Korea's nuclear tests and by missile development in the country, are considered the strongest sanctions in history, banning exports of North Korea's major items and limiting imports of machinery and oil products. Accordingly, North Korea's trade volume decreased to the level of collapse after the sanctions, meaning that the sanctions against North Korea were considered to be effective. However, according to this paper, which analyzed the price fluctuations of refined petroleum products in North Korea through the methodology of an event study, the market prices of oil products were only temporarily affected by the sanctions and remained stable over the long run despite the restrictions on the volumes of refined petroleum products introduced. This can be explained by evidence that North Korea has introduced refined oil supplies that are not much different from those before the sanctions through its use of illegal transshipments even after the sanctions. With regard to strategic materials such as refined oil, the North Korean authorities are believed to be desperately avoiding sanctions by, for instance, finding loopholes in the sanctions to meet the minimum level of demand.

Embedded System-Based Fast Fourier Transform Method for Measuring Water Content in Crude Oil

  • Shuqi Jia;Xiaolei Wang;Zhe Kan
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.399-408
    • /
    • 2024
  • The moisture content of crude oil notably affects various aspects of oil production, storage, transportation, and exploration. However, accurately measuring this moisture content is challenging because of numerous influencing factors, leading to a lack of precision in existing detection methods. This inadequacy hinders the progress of China's petroleum industry. To overcome these challenges, this paper proposes a conductivity-based method for measuring crude oil moisture content. By employing an embedded system, we designed a sensor comprising five electrodes. Additionally, we developed signal excitation and signal processing circuits. Moreover, a software program was designed to analyze and compute the output signal using fast Fourier transform operations. This facilitated the identification of flow patterns, computation of relevant flow rates, and establishment of correlation rates based on frequency spectral characteristics. Based on experimental results, we established a functional relationship between measurement parameters and crude oil moisture content. This study enhanced the precision of moisture content measurement, thereby addressing existing limitations and fostering the advancement of China's petroleum industry.