• Title/Summary/Keyword: Petiole

Search Result 393, Processing Time 0.022 seconds

Taxonomic Characteristics of Korean-native Anacardiaceae (한국산(韓國産) 옻나무과(科)의 분류학적(分類學的) 연구(硏究))

  • Kim, Sam Sik;Chung, Jae Min
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.151-165
    • /
    • 1995
  • This study was conducted to establish a systematized taxonomic problems of through the leaf morphological characters and leaf venation patterns, and stomatal cell patterns and cell characteristics of abaxial and adaxial surface of the leaflets by SEM, of 6 native species in Korea and 2 foreign species of the Genus Rhus in the Family Anacardiaceae. The results obtained from this study are summarized as followings: 1. Morphological study measured 32 characters of leaves from herbarium specimen and field-collected samples for each species. The results of cluster analysis based on the Euclidean distance showed that the species could be classified into 3 groups: R. sylvestris. R. typhina, R. succedanea: R. trichocarpa. R. chinensis. R. verniciflua: and R. ambigua. R. radicans subsp. orientale, Analysis of principal components showed 5 groups: The major factors in the first principal component group was length of petiole of the terminal leaflets, that in the second group angle of left side in the terminal leaflet bash, that in the third group area ratio between first and terminal leaflets, that in the forth group angle ratio between right and left side in the terminal leaflet base, and that in the fifth group was angle of main and secondary vein at midrib of terminal leaflet. Cumulative contribution by the first, second and third principal component group was explained with 82.6%, a large percent of all information. 2. The leaf venation pattern investigated using soft X-ray photography revealed clado-and reticulo-camptodromous types according to branching angle of the secondary vein. And three groups by the developing degree of secondary vein were R. trichocarpa, R. ambigua. R. chinensis, R. typhina; R. radicans subsp. onentale, R. succedanea, R. verniciflua: and R. sylvestris. Classification key for the Rhus of Korean-native Anacardiaceae was made by the venation pattern and devevoping degree of the secondary vein. 3. The stomatal cell patterns were greatly classified into paracytic and anomocytic types, specific among species according to stomatal and subsidiary cell patterns, and various differences among the species was determined. Microstructure of the adaxial and abaxial surfaces could be divided into synclinal and anticlinal cell wall patterns, and were specific-species. Stomatal cells of R. chinensis were surrounded with characterized villus-like cells.

  • PDF

Effects of Modified Installation Methods of Roof Ventilation Devices in the Single-span Plastic Greenhouses on Yield and Fruit Quality of Oriental Melon (단동 비닐하우스의 지붕 환기장치 설치방법 개선이 참외생육 및 과실수량에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Choi, Gyeong Lee;Lee, Seong-Chan;Lee, Jae-Han;Park, Kyoungs Sub;Lee, Jung-Sup;Bekhzod, Khoshimkhujaev
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In order to evaluate the modified installation methods of roof ventilation devices, derived from the previous experiment ('investigation into the optimum capacity of roof ventilation devices and their deployment'), the conventional and modified (improved) roof ventilation systems were installed in the single-span plastic greenhouse for growing oriental melons. The roof vents ($60{\varphi}$) and roof fans (maximum air capacity of $38m^3/min$) were installed in the spacing of 15m (FT, modified 'side vent+roof fan' ventilation) and 6m (TT, modified 'side vent+roof vent' ventilation) respectively on the roof of greenhouses for the modified roof ventilation treatments, and 20m (FC, conventional 'side vent+roof fan' ventilation) and 8m (TC, conventional 'side vent+roof vent' ventilation) for the conventional ones. The stem diameter, leaf blade lengh, petiole length, and leaf width were lower in the FT and TT treatments than those in the conventional treatments, FC and TC. Although the fruit weight and total yields were slightly lower in the FT and TT treatments, the marketable fruit ratio (%) were higher, as a result of increased fruiting ratio (%) in these treatments, than those of FC and TC. The marketable yields (kg/10a) in the FT and TT treatments were 8,391 kg/10a and 7,283 kg/10a, which were respectively 661 kg/10a and 487 kg/10a higher than those in the treatments of FC and TC. The modified installation methods of roof fan resulted in production of more female flowers and lower fruit drop ratio (%) compared to conventional meathods. In the treatment of the conventional ventilation with roof vent, the fruit weight, fruit length & width, and flesh thickness were higher than in other treatments, but there were no significant differences in the fruit width and flesh thickness among the treatments.

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.

Cell Growth in Suspension-Culture of Populus nigra var. italica and the Efficiency of Micro-Callus Formation according to Cell Plating Method (Populus nigra var. italica현탁배양(懸濁培養) 세포(細胞)의 생장(生長) 및 Cell Plating방법(方法)에 따른 Micro-Callus형성능력(形成能力))

  • Kim, Chi Moon;Lee, Jae Soon;Kwon, Ki Won
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.197-204
    • /
    • 1987
  • In order to know the growth of suspended cells by explant sources, the change of nitrogen contents of cultured cells following the growth periods, capability of micro-callus formation according to cell plating methods, growth of suspended cells on various media, and efficiency of micro-callus formation by using growth regulators and different N strengths were investigated. 1. When suspension culture was tried by using the callus induced from internode and petiole, cell fresh weight and packed cell volume increased with similar way and the growth reached at stationary phase after 12 culture days. 2. N-contents of cultured cells increased upto 3 days and decreased around 6days. But the values increased again upto 9 days, after that they showed gradual decreases. 3. Of cell plating methods, embedding method was the best for micro-callus formation. 4. Growth of suspened cells showed the rest performanoes, when they were cultured on LM medium with 1/2N strengths and BAP 0.01.2.4-D 0.1, and NAA $1.0mg/{\ell}$, after 15 cultured days(upto 76.9 folds). LM medium was better than MS or GD. The combination of auxin and cytokinin was better for cell growing than auxin-treatment only. 5. Micro-callus from single cell and small cell aggregates was formed only on MS and LM media with 2,4-D $1.0mg/{\ell}$.

  • PDF

Structural Features of the Glandular Trichomes in Leaves of Carnivorous Drosera anglica Huds. (식충식물 긴잎끈끈이주걱 (Drosera anglica Huds.) 분비모의 구조적 특성)

  • Baek, Kyung-Yeon;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Carnivorous plants vary in their unique features of morphology, ultrastructure and biochemical properties by species. Furthermore, prey-capturing mechanism as well as structural and physiological adaptations have been used for grouping various carnivorous species. In Drosera plants, glandular trichomes, which develop in the leaf epidermis, are known to play the most important role during the prey capturing process. The present study examined such trichomes, focusing on the glandular type, in leaves of Drosera anglica using scanning and transmission electron microscopy. Three types of rudimentary glandular trichomes were found to develop within the folded leaf primordia and immature leaf during early development. The first type, stalked glandular trichomes (Type I), occurred on the margin and upper epidermis of the leaf. With maturation, the longest glandular trichomes having lengthy stalks, ca. $2.2{\sim}5.1\;mm$, developed along the margin, while shorter stalked trichomes, ca. up to $200\;{\mu}m$, were found on the inner leaf blade. The shorter ones consisted of a globose head having two layers of secretory cells, parenchyma bell cells and tracheids and a multicellular stalk. The stalks gradually decreased in length in centripetal fashion. The second type, Type II, having ca. $15{\sim}30\;{\mu}m$ short stalks, also developed along the inner blade. Both types secreted mucilage from the secretory cells which had a thin cell wall and cuticle layer. The sessile six-celled glandular trichomes were the third type, Type III, and were $25{\sim}40\;{\mu}m$ in length. They were distributed most commonly throughout the upper and lower epidermis, petiole and even on the stalk surfaces of the first two types of trichomes. The third type was also found to be involved in the active secretion. In prey capturing leaves, all trichome types secreted substances through thin cuticles in the head cell wall, which exhibited relatively loose wall components.

Comparison of Growth Characteristics Between 5-year-old emblings Derived form Somatic Embryos and Seedlings in Liriodendron tulipifera (백합나무 5년생 체세포배 유래 클론배양묘 및 실생묘 간의 생장특성 비교)

  • Kim, Yong Wook;Moon, Heung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.613-618
    • /
    • 2012
  • The 5-year-old seedlings and emblings which regenerated from somatic embryos were compared to the height, DBH, foliar characteristics, content of chlorophyll (chlorophyll a, b and total chlorophyll), carotenoid and leaf microstructure in Liriodendron tulipifera. In comparison of height and DBH (diameter at breast height), no significant differences were found in height (seedling, 3.8 m; embling, 3.87 m) and DBH (seedling, 12.09 cm; embling, 12.53 cm). The emblings and seedlings were similar in values of length (seedling, 108.11 mm, embling, 113.59 mm), width (seedling, 149.1 mm; embling, 167.71 mm), surface area (seedling, $119.92mm^2$; embling, $164.43mm^2$), fresh weight (seedling, 2.1 g; embling, 2.62 g) of leaf, and length (seedling, 81.49 mm; embling, 98.41 mm) and thickness (seedling, 1.66 mm; embling, 1.98 mm) of petiole. In case of chlorophyll content in the leaves, the chlorophyll a (seedlings, $11.2{\mu}g/g$; emblings, $13.2{\mu}g/g$), b (seedlings, $4.8{\mu}g/g$; emblings, $5.4{\mu}g/g$) and total content were higher in emblings ($930.2{\mu}g/g$) than seedlings ($800.1{\mu}g/g$), however, content of carotenoid (seedlings, $260.3{\mu}g/g$; embling, $265.2{\mu}g/g$) showed similar in both plants. Leaves of emblings had a similar pattern of histological structure (palisade or sponge parenchyma) to that of seedlings leaves. Therefore, the results showed that there were no remarkable growth differences when compared with 5-year-emblings and seedlings of yellow poplar.

Effect of Various Composition of Nutrient Solution on Growth and Yield of Strawberry 'Maehyang' in Coir Substatrate Hydroponics (다양한 배양액 조성이 코이어 수경재배 딸기 '매향'의 생육과 수량에 미치는 영향)

  • Lee, Jeong Hun;Lee, Yong-Beom;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This study aimed to investigate the nutrient solution developed by based on nutrient-water absorption rate of strawberry 'Maehyang' by comparing growth and yield for 8 months with 5 kinds of nutrient solution with different ion composition. Strawberry plants were planted at elevated bed and supplied with five kinds of nutrient solutions (RDA), Yamazaki, PBG, University of Seoul (UOS) and NewUOS from one month onwards. Five types of nutrient solution were supplied to the strawberry plants associated with EC $1.0dS{\cdot}m^{-1}$, pH 6.0, $150{\sim}300mL{\cdot}plant^{-1}$ per day. At 60 days after planting, leaf width and leaf petiole of the strawberry plants showed significant differences among nutrient solution types and photosynthesis was higher in RDA and NewUOS nutrient solution and lower in PBG nutrient solution. The EC of the drainage on vegetative growth stage was $0.7{\sim}0.8dS{\cdot}m^{-1}$, which is lower than the supplied EC level, and to $1.0-1.2dS{\cdot}m^{-1}$, afterwards. The pH of the drainage was higher in Yamzaki solution as 6.2~6.8, while the pH of the UOS nutrient solution was lower in 5.1~5.2. Nitrate content was most absorbed in vegetative growth stage and after flower clusters development. The potassium uptake was highest at the NewUOS followed by UOS and Yamazaki nutrient solution. At six months after -planting fresh weight and dry weight of shoot and root were higher in UOS and NewUOS nutrient solution than other nutrient solutions, and the dry matter ratio was lower at 43.5% in Yamazaki nutrient solution and 30.6% in NewUOS nutrient solution than other solutions. Length, width, weight, and sugar content of the strawberries harvested from December to February were unaffected by treatment, but yield was higher in NewUOS nutrient solution due to increasing fruit number and average weight. From March to May, number of fruit was higher in Yamazaki nutrient solution. In conclusion, there was no difference in the growth of 'Maehyang' when 5 nutrient solutions were grown under hydroponics. But in order to improve the marketability, the NewUOS nutrient solution is appropriate to use from planting to February and it is suitable to use Yamazaki nutrient solution after March when temperature is high and the amount of fruit set per inflorescence.

Optimum Nutrient Solution Strength for Korean Strawberry Cultivar 'Daewang' during Seedling Period (국내 육성 신품종 딸기 '대왕'의 육묘기 적정 배양액 농도)

  • Jun, Ha Joon;Jeon, Eui Hwan;Kang, Soo In;Bae, Geun Hye
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.812-818
    • /
    • 2014
  • Raising seedlings is important for fruit crops and is especially significant for strawberries as it accounts for 80% of their cultivation. However, there are few studies on raising seedlings of strawberries by hydroponics. Since strawberries show clear differences in growth characteristics based on cultivar, it is necessary to develop suitable fertilizer formula, concentration and pH for each cultivar, and also to examine the amount of nutrient feeding appropriate for each medium type. A key to raising seedlings of strawberries by hydroponics is the development of strategies to manage the concentration of nutrient solution. The mother plants of 'Daewang' strawberries were planted on hydroponics benches filled with cocopeat on March 28, 2012. Three nutrient solution treatments were employed during the term of raising seedlings: a type that supplied EC $0.6dS{\cdot}m^{-1}$ nutrient solution for 30 days and only water for 20 days [0.6 (30) + 20]; a type that supplied EC $1.2dS{\cdot}m^{-1}$ nutrient solution for 30 days and only water for 20 days [1.2 (30) + 20]; and a type that supplied EC $1.2dS{\cdot}m^{-1}$ nutrient solution for 50 days [1.2 (50)]. The plants were then planted on hydroponics benches filled with cocopeat on September 20, and managed with EC $0.6-0.8dS{\cdot}m^{-1}$ strawberry nutrient solution developed by Yamazaki. After planting, shoot growth, flowering rate and fruit quality of the first cluster were investigated. The petiole length, leaf length, leaf width and crown diameter showed the highest grown in the [1.2 (50)] treatment, followed by [1.2 (30) + 20], and then [0.6 (30) + 20], indicating that the higher concentration of nutrient solution was preferable for raising seedlings. However, the growth differences among treatments gradually disappeared as growth continued, and the crown diameter especially grew to exhibit almost no difference at all among treatments. The point of flowering came first in [0.6 (30) + 20], followed by [1.2 (30) + 20] and then [1.2 (50)]. The [0.6 (30) + 20] treatment showed much earlier flowering than other treatments, which implies that low-concentration nutrient solution may be beneficial to the flowering of 'Daewang' strawberries while raising seedlings. There was no statistically significant difference among treatments in fruit length, fruit diameter and fruit firmness. Fruit weight in [1.2 (50)] treatment was significantly higher than other treatments. However, soluble solids of fruit was the lowest in [1.2 (50)] treatment. Together, the results of this experiment imply that it is better to supply EC $0.6dS{\cdot}m^{-1}$ solution for 30 days and then supply only water for 20 days to adequately manage concentration of nutrient solutions during the period of raising seedlings of strawberries by hydroponics.

Isolation, Quality Evaluation, and Seasonal Changes of Bakkenolide B in Petasites japonicus by HPLC (머위로부터 Bakkenolide B의 순수분리, HPLC분석 방법 및 채취 시기별 함량 분석)

  • Kim, Tae Hoon;Kim, Do Youn;Jung, Won Jung;Nagaiya, Ravichandran;Son, Beung Gu;Park, Young Hoon;Kang, Jum Soon;Lee, Young Jae;Im, Dong-Soon;Lee, Young-Geun;Choi, Yung Hyun;Choi, Young-Whan
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.252-259
    • /
    • 2014
  • The leaves of Peatasites japonicus are a traditional oriental medicine with diverse biological activities. A simple and specific analytical method for the quantitative determination of bakkenolide B constituents from methanolic extract of the leaves of P. japonicus was developed. Bakkenolide B was isolated from the leaves of P. japonicus, and its structure was elucidated based on 1D, 2D NMR, and GC-MS spectral data. A liquid chromatographic method was developed to evaluate the quality of P. japonicus through determination of major active compound, bakkenolide B. The wavelengths at 254 and 215 nm were chosen to determine bakkenolide B. The recovery of the method was in the range of 98.6 to 103.1%, and bakkenolide B showed good linearity ($r^2$=0.999) within test ranges. The developed method was applied to the determination of bakkenolide B in the plant part and seasonal changes. The results showed that the content of bakkenolide B in the leaf was higher than in the petiole and rhizome. In this study, a simple, rapid, and reliable high-performance liquid chromatography method was used to determine the percentage and composition of bakkenolide B in P. japonicus procured from different Petasites species plants in South Korea. The method can be employed in routine quantitative analysis and quality control of different products in the market.

Possibilities of Wasabia japonica Matsum Culture using Cold Water of the Soyang River Dam (소양강댐의 냉수(冷水)를 이용한 고추냉이 재배 가능성)

  • Lee, Sung-Woo;Seo, Jeong-Sik;So, Ho-Seob;Beon, Hak-Su;Park, Jang-Hwan;Kim, Suk-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.4
    • /
    • pp.294-300
    • /
    • 1996
  • We performed an experiment to confirm the possibility of wasabi culture using the wat­er of the Soyang River Dam in Chunchon and the ground water in Suwon. Water mineral content of Soyang River except for P was less than that of ground water of Suwon. Dis­solved oxgen and E C of Chunchon was proper to culture wasabi but E C and dissolved oxgen of Suwon was not suitable for that. Water temp. of Soyang river was very changable by month while that of the ground water in Suwon was kept constantly. In Soyang river of Chunchon the month that water temp. show $8{\sim}18^{\circ}C$, optimal growth temp., was May to Nov. and the month that water temp. show less than $6^{\circ}C$, growth limit temp., was $Jan.\;{\sim}\;Feb.$ of Chunchon. Rhizome weight of main stem in Chunchon and Suwon was 63g and 22g per plant and rate of maketable rhizome was each 80%, 0% by culture of 32 months to include raising see­dling period of 13 months. Dry matter partitioning ratio of petiole in Soyang river of Chunchon was the highest of all others but it was lowest of all others in ground water of Suwon. Rhizome weight of main stem in Chunchon was showed possitive correlation with plant height and fresh top weight and in Suwon it was showed possitive correlation with root weight and high possitive correlation with No. of total leaves and No. of tillers.

  • PDF