• Title/Summary/Keyword: Perturbed Equations

Search Result 121, Processing Time 0.026 seconds

Dynamic and reliability analysis of stochastic structure system using probabilistic finite element method

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Cho, Dae-Seung
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.125-135
    • /
    • 2004
  • Industrial structure systems may have nonlinearity, and are also sometimes exposed to the danger of random excitation. This paper proposes a method to analyze response and reliability design of a complex nonlinear structure system under random excitation. The nonlinear structure system which is subjected to random process is modeled by finite element method. The nonlinear equations are expanded sequentially using the perturbation theory. Then, the perturbed equations are solved in probabilistic methods. Several statistical properties of random process that are of interest in random vibration applications are reviewed in accordance with the nonlinear stochastic problem.

Random Vibration Analysis of Nonlinear Structure System using Perturbation Method

  • Moon, Byung-Young;Kang, Beom-Soo;Kang, Gyung-Ju
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.243-250
    • /
    • 2001
  • Industrial machines are sometimes exposed to the danger of earthquake. In the design of a mechanical system, this factor should be accounted for from the viewpoint of reliability. A method to analyze a complex nonlinear structure system under random excitation is proposed. First, the actual random excitation, such as earthquake, is approximated to the corresponding Gaussian process far the statistical analysis. The modal equations of overall system are expanded sequentially. Then, the perturbed equations are synthesized into the overall system and solved in probabilistic way. Several statistical properties of a random process that are of interest in random vibration applications are reviewed in accordance with nonlinear stochastic problem. The obtained statistical properties of the nonlinear random vibration are evaluated in each substructure. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.

  • PDF

Robust Controller Design for the Nuclear Reactor Power Control System

  • Lee, Yoon-Joon;Park, Jung-In
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.280-290
    • /
    • 1997
  • The robust controller for the nuclear reactor power control system is designed. The nuclear reactor is modeled by use of the point kinetics equations and the singly lumped energy balance equations, Since the model is not exact, the controller which can make the actual system robust is necessary. The perturbed plant is investigated by employing the uncertainties of the initial power level and the physical properties, and by introducing the delay into the modeled plant The overall system is configured into the two port model and the H$\infty$ controller is designed. In designing the H$\infty$ controller, two factors of the loop shaping and the permissible magnitude of control input are taken into account The designed controller provides the sufficient margins for the robustness, and the transients of the system output power and the control input satisfy their associated requirement.

  • PDF

The Effect of Oil Supply Conditions on the Dynamic Performance of a Hydrodynamic Journal Bearing

  • Son, Sang-Ik;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.6-12
    • /
    • 2009
  • In this study, the effect of oil supply conditions on the dynamic performance of a hydrodynamic journal bearing is analyzed numerically. Axial length, circumferential length and location of oil grooves are considered as oil supply conditions. The perturbation equations of the perturbed film contents are obtained by applying Elrod's universal equation implementing JFO film rupture / reformation boundary conditions to Lund's infinitesimal perturbation method. The dynamic coefficients of a hydrodynamic journal bearing are calculated by solving the perturbation equations, and the linear stability analysis is carried out by using those for a variety of oil supply conditions.

A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight (전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구)

  • 정성남;김경남;김승조
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

Stability of LTI Systems with Unstructured Uncertainty Using Quadratic Disc Criterion

  • Yeom, Dong-Hae;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.124-131
    • /
    • 2012
  • This paper deals with robust stability of linear time-invariant (LTI) systems with unstructured uncertainties. A new relation between uncertainties and system poles perturbed by the uncertainties is derived from a graphical analysis. A stability criterion for LTI systems with uncertainties is proposed based on this result. The migration range of the poles in the proposed criterion is represented as the bound of uncertainties, the condition number of a system matrix, and the disc containing the poles of a given nominal system. Unlike the existing methods depending on the solutions of algebraic matrix equations, the proposed criterion provides a simpler way which does not involves algebraic matrix equations, and a more flexible root clustering approach by means of adjusting the center and the radius of the disc as well as the condition number.

The Interpretation Uncertain Bound for the Uncertain Linear Systems via Lyapunov Equations (Lyapunov 방정식을 이용한 불확실한 선형 시스템의 섭동 유계 해석)

  • Cho, Do-Hyoun;Lee, Sang-Chul;Choi, Jin-Taik;Lee, Sang-Hun;Lee, Jong-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.485-486
    • /
    • 2007
  • In this paper, we use Lyapunov equations and functions to consider the linear systems with perturbed system matrices. And we consider that what choice of Lyapunov function V would allow the largest perturbation and still guarantee that V is negative definite. We find that this is determined by testing for the existence of solutions to a related quadratic equation with matrix coefficients and unknowns the so-called matrix Riccati equation.

  • PDF

Global Small Solutions of the Cauchy Problem for Nonisotropic Schrödinger Equations

  • Zhao, Xiangqing;Cui, Shangbin
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.101-108
    • /
    • 2008
  • In this paper we study the existence of global small solutions of the Cauchy problem for the non-isotropically perturbed nonlinear Schr$\"{o}$dinger equation: $iu_t\;+\;{\Delta}u\;+\;{\mid}u{\mid}^{\alpha}u\;+\;a{\Sigma}_i^d\;u_{x_ix_ix_ix_i}$ = 0, where a is real constant, 1 $\leq$ d < n is a integer is a positive constant, and x = $(x_1,x_2,\cdots,x_n)\;\in\;R^n$. For some admissible ${\alpha}$ we show the existence of global(almost global) solutions and we calculate the regularity of those solutions.

Vibration Reduction of an Optical Disk Drive Using an Automatic Ball Balancer (자동 볼 평형장치를 이용한 광 디스크 드라이브의 진동 저감)

  • 이동진;정진태;노대성
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.355-362
    • /
    • 1999
  • Vibration reduction of an optical disk drive is achieved by an automatic ball balancer and dynamic behaviors of the drive are studied by theoretical approaches. Using Lagrange's equation, we derive nonlinear equations of motion for a non-autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of equilibrium positions, the Floquet theory is applied to the perturbed equations. On the other hand, time responses are computed by an explicit time integration method. We also investigate the effects of mass center and the position of the ABB on the dynamic behaviors of the system.

  • PDF

EXISTENCE AND EXPONENTIAL STABILITY OF NEUTRAL STOCHASTIC PARTIAL INTEGRODIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH IMPULSIVE EFFECTS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;ANGURAJ, A.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.1_2
    • /
    • pp.9-26
    • /
    • 2022
  • The purpose of this work is to study the existence and continuous dependence on neutral stochastic partial integrodifferential equations with impulsive effects, perturbed by a fractional Brownian motion with Hurst parameter $H{\in}({\frac{1}{2}},\;1)$. We use the theory of resolvent operators developed in Grimmer [19] to show the existence of mild solutions. Further, we establish a new impulsive-integral inequality to prove the exponential stability of mild solutions in the mean square moment. Finally, an example is presented to illustrate our obtained results.