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Abstract: In this study, the effect of oil supply conditions on the dynamic performance of a hydrodynamic journal bearing is

analyzed numerically. Axial length, circumferential length and location of oil grooves are considered as oil supply conditions.

The perturbation equations of the perturbed film contents are obtained by applying Elrod’s universal equation implementing

JFO film rupture / reformation boundary conditions to Lund’s infinitesimal perturbation method. The dynamic coefficients of a

hydrodynamic journal bearing are calculated by solving the perturbation equations, and the linear stability analysis is carried

out by using those for a variety of oil supply conditions.
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Nomenclature

1. Introduction

Lubricating oil needs to be supplied sufficiently through oil

grooves in order for a hydrodynamic journal bearing to operate

Cij Dimensionless damping coefficient

FX , FZ Dimensionless reaction force components in X and

Z direction

H Dimensionless film thickness

Kij Dimensionless stiffness coefficient

M Dimensionless mass of a journal

MC Dimensionless critical mass

P Dimensionless pressure

PC Dimensionless cavitation pressure

PS Dimensionless oil supply pressure

T Dimensionless time

W Dimensionless load

c Bearing clearance

cij Damping coefficient

d Bearing diameter

fx , fz Reaction force components in x and z direction

gs Switch function

h Film thickness

kij Stiffness coefficient

l Bearing width

lg Axial length of oil grooves

n Normal direction to interfaces between the

cavitation region and full film region

p Pressure

pc Cavitation pressure

r Bearing radius

w Load

B Dimensionless bulk modulus

Ω Whirl ratio

ΩC Critical whirl ratio

β Bulk modulus

γ Oil groove angle

η Oil viscosity

θ g1, θ g2 Location of oil groove#1 and groove#2

θ f Film content

(θ f)i Perturbed film content 

ρ Mixture density of both oil and air

ρc Oil density at the cavitation pressure

ω Rotating speed of a journal

ωw Whirl speed of a journal

Subscripts

cavity Cavitation region

full film Full film region

o Equilibrium position

Oil groove Oil groove
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properly. The performance of a hydrodynamic journal bearing

varies with oil supply conditions such as the location and

specification of oil grooves. Therefore, when designing a

hydrodynamic journal bearing, it is essential to analyze the

effect of oil supply conditions on the performance of a

hydrodynamic journal bearing. 

Many studies have been carried out to analyze the effect of

oil supply conditions on the performance of a hydrodynamic

journal bearing. Ken et al. [1] analyzed the effect of oil supply

pressure and the location of axial grooves on the static

performance of a hydrodynamic journal bearing. So et al. [2]

analyzed the cooling effect of lubricating oil by varying oil

supply pressure and the length of axial grooves of a

hydrodynamic journal bearing. They reported that the cooling

effect of lubricating oil and load capacity decreased as oil

supply pressure and the length of axial grooves decreased. 

In the above studies, however, the cavitation region where

cavitation occurred was not predicted appropriately because

the position of the maximum film thickness was considered as

the film reformation position, where violated the principle of

mass conservation. It is essential to predict the cavitation

region appropriately because the cavitation region varies with

oil supply conditions and affects the performance of a

hydrodynamic journal bearing greatly.

Many efforts have been made to predict the cavitation region

appropriately when analyzing the performance of a

hydrodynamic journal bearing. Zhang [3] calculated the

dynamic coefficients of an infinitely wide journal bearing and

carried out the linear stability analysis by varying oil supply

pressure and the location of an axial groove. Jeong et al. [4]

analyzed the effect of the location of axial, spiral and X-shaped

grooves on the static performance of a hydrodynamic journal

bearing. Vijayaraghavan et al. [5] analyzed the static performance

of a hydrodynamic journal bearing by varying the number and

location of axial and cylindrical grooves. They reported that the

cavitation region varied with the location of oil grooves and

load capacity became the greatest when oil grooves were

located in the cavitation region or the position of the maximum

film thickness. Costa et al. [6] analyzed the effect of oil supply

pressure, oil temperature, the location and specification of oil

grooves on the static performance of a hydrodynamic journal

bearing and compared analysis results with experiments. Wang

et al. [7, 8] analyzed the static and dynamic performance of an

infinitely wide journal bearing by varying oil supply pressure

and the location of an oil groove.

Most of previous studies focused on analyzing the effect of

oil supply conditions on the static performance of a

hydrodynamic journal bearing, so it was insufficient to analyze

that on the dynamic performance of a hydrodynamic journal

bearing.

In this study, axial, circumferential length and location of oil

grooves are considered as oil supply conditions and the effect

of those on the dynamic performance of a hydrodynamic

journal bearing is analyzed numerically. Elrod’s universal

equation which implements JFO film rupture / reformation

boundary conditions is adopte in order to consider the effect of

the cavitation region. The perturbation equations are obtained

by applying Elrod’s universal equation to Lund’s infinitesimal

perturbation method, and the linear stability analysis of a

hydrodynamic journal bearing is carried out by solving those

for oil supply conditions.

2. Analysis

2.1. Governing equation

The pressure distribution of fluid film in a hydrodynamic

journal bearing is determined by Reynolds equation.

(1)

The clearance of a hydrodynamic journal bearing has

converging-diverging geometry. Cavitation occurs when the

pressure of fluid film drops below the saturation pressure

within the clearance having diverging geometry. The cavitation

region can be predicted by finding the film rupture and

reformation positions. Jakobsson, Floberg [9] and Olsson [10]

formulated JFO boundary conditions based on the principle of

mass conservation at the interfaces between the cavitation

region and full film region. JFO boundary conditions are

expressed as

(2)

(3)

where the cavitation pressure, pc represents the pressure of

fluid film in the cavitation region, and film content, θf

represents the ratio of the mixture density of both oil and air, ρ

to oil density at the cavitation pressure, ρc. Equation (2) is the

boundary condition at the film rupture position, and Eq. (3) is

that at the film reformation position.

Elrod and Adams [11] proposed Elrod’s universal equation

satisfying JFO boundary conditions.

(4)

Film content is related with the pressure of fluid film by the

expression as

(5)

where

(6)

(7)
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In the above equations, switch function, gs is a variable to divide

into the cavitation region and full film region, and fluid bulk

modulus, β represents the reciprocal of fluid compressibility

defining how much fluid can be compressed.

Dimensionless forms of Eq. (4) and (5) are expressed as

(8)

(9)

where

(10)

2.2. Linear stability analysis

The bearing dynamic coefficients are calculated by using

Lund’s infinitesimal perturbation method, which formulates

the perturbation equations from the first-order Taylor

expansion of the pressure distribution in fluid film proposed by

Lund and Thomsen [12]. Assuming that the amplitude of a

journal motion is infinitesimal about the equilibrium position,

dimensionless film thickness changed by a journal motion is

expressed as

 

(11)

where

(12)

In Eq. (11), H0 represents dimensionless film thickness at the

equilibrium position. 

Film content changed by a journal motion is expressed as

(13)

where

(14)

In Eq. (13), (θf)0 represents the film content at the

equilibrium position, and other terms represent perturbed film

contents. It is assumed that the cavitation region at the

equilibrium position is not changed by the infinitesimal

amplitude of a journal motion and the film content of couette

and unsteady terms of Eq. (8) is unity in the full film region

because fluid density in the full film region is nearly close to

that at the cavitation pressure. In the full film region, then, Eq.

(8) is expressed as

(15)

Substituting Eq. (11) and (13) into Eq. (15) and retaining

only the first-order terms, five perturbation equations are

obtained as

(16)

(17)

(18)

(19)

(20)

Equation (16) is identical to Elrod’s universal equation in the

full film region under steady state. The solution of Eq. (16) is
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Fig. 1. Force components acting on a journal.
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obtained by using Elrod’s cavitation algorithm [13]. Equations

(17)~(20) are solved by using the finite difference method with

Gauss-Seidel iteration. The boundary conditions for

calculating perturbed film contents are

(21)

              

Figure 1 shows a static load, w and reaction force

components, fx and fz. Dimensionless reaction forces changed

by the infinitesimal amplitude of a journal motion are

expressed as

(22)

where 
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Fig. 2. Axial type grooved journal bearing.

Table 1. Specification of parameter values

Bearing width / bearing diameter (l / d) 1.0

Bearing clearance / bearing diameter (c / d) 1/1000

Axial length of oil grooves / bearing width (lg / l) 1/2

Oil groove angle (γ )  20o

Location of oil groove#1 (θg1)  90o

Location of oil groove#2 (θ g2)  270o

Dimensionless fluid bulk modulus (Β ) 300

Dimensionless oil supply pressure (PS) 0.0

Dimensionless cavitation pressure (PC) 0.0
Fig. 3. The linear stability analysis of a journal bearing with

variation of axial length of oil grooves.
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(27)

where

(28)

When the motion of a journal is stable orbitally, it is

expressed as 

(29)

Substituting Eq. (29) into Eq. (27), the dimensionless

equation of a journal motion is expressed as 

(30)

The determinant should be zero for a nontrivial solution of

Eq. (30). Dimensionless mass of a journal, M and whirl ratio,

Ω satisfying the determinant is zero are dimensionless critical

mass, MC and critical whirl ratio, ΩC.

2.3. Test bearing

Figure 2 shows the geometry of a hydrodynamic journal

bearing with two axial grooves and Table 1 represents its

parameter values. A journal rotates in a counterclockwise

direction and dimensionless pressure at the both end sides of a

bearing is equal to zero.

The analysis is carried out by varying one parameter among

oil supply conditions and keeping the others constant in order

to analyze the effect of each parameter on the dynamic

performance of a hydrodynamic journal bearing.
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Fig. 4. The linear stability analysis of a journal bearing with

variation of circumferential length of oil grooves.

Fig. 5. The linear stability analysis of a journal bearing with

variation of oil groove#1 location.
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3. Results and Discussion

3.1. The effect of the axial length of oil grooves

The effect of axial length of oil grooves on the dynamic

performance of a hydrodynamic journal bearing is analyzed by

increasing the ratio of axial length of oil grooves, lg to bearing

width, l from 1/6 to 5/6. 

Figure 3 represents plots of dimensionless critical mass and

critical whirl ratio with respect to dimensionless load. As

shown in Fig. 3 (a), dimensionless critical mass increases with

the increase in dimensionless load for the given ratio of axial

length of oil grooves to bearing width. When dimensionless

mass of a journal is greater than dimensionless critical mass,

whirl instability occurs. Therefore, dimensionless mass of a

journal should be lower than dimensionless critical mass in

order for a rotor-bearing system to operate stably without whirl

instability. Dimensionless critical mass increases abruptly as

dimensionless load is nearly close to ten. When dimensionless

load exceeds that, a rotor-bearing system is always stable

regardless of dimensionless mass of a journal. This tendency

can also be observed in analysis results of the circumferential

length and location of oil grooves. For the dimensionless load

given, dimensionless critical mass increases with the increase

in the ratio of axial length of oil grooves to bearing width. That

means the stability of a rotor-bearing system increases with the

increase in axial length of oil grooves. As shown in Fig. 3 (b),

critical whirl ratio decreases with the increase in the ratio of

axial length of oil grooves to bearing width for the

dimensionless load given.

3.2. The effect of the circumferential length of oil grooves

The effect of circumferential length of oil grooves on the

dynamic performance of a hydrodynamic journal bearing is

analyzed by increasing oil groove angle, γ from 10o to 60o. The

circumferential length of oil grooves increases with the

increase in oil groove angle.

Figure 4 represents plots of dimensionless critical mass and

critical whirl ratio with respect to dimensionless load. As

shown in Fig. 4 (a), dimensionless critical mass decreases with

the increase in oil groove angle for the dimensionless load

given. Therefore, the circumferential length of oil grooves

should be shorter in order to improve the stability of a rotor-

bearing system. As shown in Fig. 4 (b), critical whirl ratio

increases with the increase in oil groove angle for the

dimensionless load given.

3.3. The effect of the location of oil grooves

The effect of location of oil grooves on the dynamic

performance of a hydrodynamic journal bearing is analyzed by

varying the location of oil groove#1, θg1 and oil groove#2, θg2. 

Figure 5 represents plots of dimensionless critical mass and

critical whirl ratio with respect to dimensionless load by

varying the location of oil groove#1 from 0o to 150o and keeping

the location of oil groove#2 270o. As shown in Fig. 5 (a), the

location of oil groove#1 where dimensionless critical mass

becomes the greatest varies with dimensionless load.

Dimensionless critical mass is greater when oil groove#1 is

located between 0o and 60o than between 60o and 150° for the

dimensionless load given and decreases as the location of oil

groove#1 increases from 60o to 150o. Therefore, oil groove#1

should be located between 0o and 60o in order to improve the

stability of a rotor-bearing system. As shown in Fig. 5 (b),

critical whirl ratio increases with the increase in location of oil

groove#1 for the dimensionless load given.

Figure 6 represents plots of dimensionless critical mass and

critical whirl ratio with respect to dimensionless load by

varying the location of oil groove#2 from 210o to 360o and

keeping the location of oil groove#1 90o. As shown in Fig. 6 (a),

dimensionless critical mass becomes the greatest when oil

groove#2 is located at 210o for the dimensionless load given.

Therefore, oil groove#2 should be located near 210o in order to

improve the stability of a rotor-bearing system. As shown in

Fig. 6 (b), critical whirl ratio is smaller when oil groove#2 is

located at 210o or 240o than at the others for the dimensionless

load given.

4. Conclusion

In this study, the effect of oil supply conditions on the

dynamic performance of a hydrodynamic journal bearing has

been analyzed numerically. Elrod’s universal equation was

used in order to predict the cavitation region varying with oil

Fig. 6. The linear stability analysis of a journal bearing with

variation of oil groove#2 location.
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supply conditions accurately. The conclusions are as follows:

1. Dimensionless critical mass increases as the axial length of

oil grooves increases or the circumferential length of oil

grooves decreases.

2. Dimensionless critical mass is greater when oil groove#1 is

located between 0o and 60o than between 60o and 150o, and the

location of oil groove#1 where dimensionless critical mass

becomes the greatest varies with dimensionless load.

3. Dimensionless critical mass becomes the greatest when oil

groove#2 is located at 210o.
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