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Abstract. In this paper we study the existence of global small solutions of the

Cauchy problem for the non-isotropically perturbed nonlinear Schrödinger equation:

iut + ∆u + |u|αu + a
∑d

i uxixixixi = 0, where a is real constant, 1 ≤ d < n is a inte-

ger, α is a positive constant, and x = (x1, x2, · · · , xn) ∈ Rn. For some admissible α we

show the existence of global(almost global) solutions and we calculate the regularity of

those solutions.

1. Introduction

This paper is concerned with the Cauchy problem of the following fourth-order
nonlinear dispersive equation in Rn ×R:

(1)
{

iut + ∆u + |u|αu + a
∑d

i uxixixixi
= 0, x ∈ Rn, t ∈ R.

u(x, 0) = ϕ(x), x ∈ Rn.

where d is an integer, 1 ≤ d < n, a is a nonzero real constants, and α is a pos-
itive constant. This equation is a modified version of the semi-discrete nonlinear
Schrodinger equation (see [1]), or a non-isotropic higher-order perturbation of the
second-order nonlinear Schrodinger equation:

(2) iut + ∆u + |u|αu = 0, x ∈ Rn, t ∈ R.

Clearly, the following equations are special cases of (1)

iut(x, y, z, t) + ∆u + |u|αu + auxxxx = 0,
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iut(x, y, t) + ∆u + |u|αu + auxxxx = 0.

The first equation arose in the study of solitary wave propagation in a bulk medium,
and the second equation arose in a similar problem in a planar waveguide geometric
medium (see [1]-[2]). We also refer the reader to see Fibich, Ilan and Schochet [3]
and Fibich and Papanicolaou [4]-[5] for more details of the physical background of
these equations.

Ribaud and Youssfi in [6] studied self-similar solution of the classical Schrödinger
equation (2). To establish self-similar solutions, they investigate global small solu-
tions first. By using the general existence result to a special class of initial datum
they obtained the existence of self-similar solutions. As an byproduct, they also
obtain regularity of the solutions. Because of the lack of scaling invariant for the
non-isotropically perturbed nonlinear Schrödinger equation (1), we will only study
its global small solutions and calculate the regularity of those solutions.

Before stating our main results precisely, we first introduce some notations. As
usual S(Rn) denotes the Schwartz’s space of test functions, S′(Rn) is its dual. Let
p and s be reals such that 1 < p < ∞, 0 < s < n

p . Let ∇s be the pseudo-differential
operator with symbol |ξ|s, then Ḣs

p(Rn) is the set of all f ∈ Lp(Rn) such that
∇sf ∈ Lp(Rn). So Ḣs

p(Rn) is a Banach space of tempered distributions equipped
with the norm ‖f‖Ḣs

p(Rn) = ‖∇sf‖Lp(Rn). We take the solution spaces Es and Es
T0

to be the spaces of all Bochner measurable functions u : (0,∞) → Ḣs
p(Rn) such

that
‖u‖Es ≡ sup

t>0
tθ‖u‖Ḣs

p(Rn) < ∞,

and
‖u‖Es

T0
≡ sup

0<t≤T0

tθ‖u‖Ḣs
p(Rn) < ∞,

for any T0 satisfying 0 < T0 < ∞.
Where θ will be determined in the proof of the main theorem later.
As in [6], we define the admissible α and the range of regularity for the solutions:

Iα.

Definition 1.

1) If α < 1, Iα = {0} ∩ (n
2 −

2n(α+2)
(2n−d)α , n

2 −
2n(α+2)

(2n−d)α(α+1) ).

2) If α ≥ 1 and α /∈ 2N , Iα = (n
2 −

2n(α+2)
(2n−d)α , n

2 −
2n(α+2)

(2n−d)α(α+1) ) ∩ [0, α).

3) If α ≥ 1 and α ∈ 2N , Iα = (n
2 −

2n(α+2)
(2n−d)α , n

2 −
2n(α+2)

(2n−d)α(α+1) ) ∩ [0,∞).

Definition 2. We will say that α is admissible if Iα is not empty.

The main result is

Theorem. Let α be admissible, s ∈ Iα, and set u0(t, x) = [S(t)φ](x).
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1) (global solution) Let a < 0, if there exists 0 < ε � 1 such that

‖u0‖Es ≤ ε,

then there exists a unique solution u(t, x) ∈ Es of system (1) with ‖u‖Es ≤ 2ε.

2) (almost global solution) Let a > 0, if there exists 0 < ε � 1 such that

‖u0‖Es
T0
≤ ε,

then there exists a unique solution u(t, x) ∈ Es
T0

of system (1) with ‖u‖Es
T0
≤

2ε. Here T0 is an arbitrary positive number satisfying 0 < T0 < ∞.

In the sequel, C will denote a constant which may differ at each appearance,
possibly depending on the dimension or other parameters and for p ≥ 1 we set
p′ = p

p−1 .

2. Preliminary lemmas

The solutions of the free equation{
iut + ∆u + a

∑d
i uxixixixi = 0, x ∈ Rn, t ∈ R.

u(x, 0) = ϕ(x), x ∈ Rn.

is
u(x, t) = S(t)ϕ = (I ∗ ϕ)(x, t),

where
I(x, t) = (2π)−n

∫
Rn

e2πx·ξ+it((−|ξ|2+a
∑d

k=1 ξ4
k)dξ.

Lemma 1. We have the Lp′ −Lp estimates for the linear operator S(t) as follows:
1) let a > 0, then ∀φ ∈ Lp′ , 0 < T0 < ∞, we have

(3) ‖S(t)φ‖Lp ≤ C|t|−
2n−d

4 (1− 2
p )‖φ‖Lp′ , 0 < |t| ≤ T0.

Furthermore,

‖S(t)φ‖Ḣs
p
≤ C|t|−

2n−d
4 (1− 2

p )‖φ‖Ḣs
p′

, 0 < |t| ≤ T0,

where s ∈ R and 2 ≤ p ≤ ∞.
2) let a < 0, then ∀φ ∈ Lp′ , |t| 6= 0 we have

‖S(t)φ‖Lp ≤ C|t|−
2n−d

4 (1− 2
p )‖φ‖Lp′ .

Furthermore,
‖S(t)φ‖Ḣs

p
≤ C|t|−

2n−d
4 (1− 2

p )‖φ‖Ḣs
p′

,
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where s ∈ R and 2 ≤ p ≤ ∞.

Proof. Letting

Ij(x, t) =

{
(2π)−1

∫∞
−∞ ei[xjξj−t(ξ2

j−aξ4
j )]dξj for 1 ≤ j ≤ d,

(2π)−1
∫∞
−∞ ei(xjξj−tξ2

j )dξj for d + 1 ≤ j ≤ n,

we see that

I(x, t) =
n∏

j=1

Ij(x, t).

By Lemma 2.1 of [9] (see also Theorem 1 of [10]) we have

(4) Ij(x, t) =
{

C|t|− 1
4 for 1 ≤ j ≤ d,

C|t|− 1
2 for d + 1 ≤ j ≤ n,

for 0 < |t| ≤ T0.
Thus

I(x, t) ≤ C|t|−
2n−d

4 , 0 < |t| ≤ T0.

By Young’s inequality, this implies that

(5) ‖S(t)φ‖L∞ ≤ C|t|−
2n−d

4 ‖φ‖L1 , 0 < |t| ≤ T0.

Besides, since the polynomial P (ξ) is real, it is clear that

(6) ‖S(t)φ‖L2 = ‖φ‖L2 .

Hence, by interpolation between (5) and (6) we immediately obtain (3) for 0 < |t| ≤
T0.

If a < 0 then the polynomial P1(ξ) = −ξ2
j + aξ4

j satisfies

P1
′′(ξ) ≤ 12|a|ξ2

j , for any ξj ∈ R.

It follows from the proof of Lemma 2.1 of [9] (taking δ there to be zero) that the
inequalities in (4) on the part 1 ≤ j ≤ d hold for all t ∈ R \ {0}. Since it is
well-known that the inequalities in (4) on the part d + 1 ≤ j ≤ n also hold for all
t ∈ R \ {0}, we conclude that (5) holds for all t ∈ R \ {0}. Thus (3) holds for all
t ∈ R \ {0}.

To prove the second inequality in 1), 2), the following facts should be noticed.
∀ω ∈ S′(Rn), we have

F−1(ωŜ(t)ϕ) = F−1(ωeit(−|ξ|2+a
∑d

k=1 ξ4
k)ϕ̂)

= F−1(eit(−|ξ|2+a
∑d

k=1 ξ4
k)FF−1(ωϕ̂)) = S(t)(F−1(ωϕ̂)).

In particular, by the first inequality, we obtain

‖F−1(ω ˆS(t)ϕ)‖Lp ≤ C|t|−
2n−d

4 (1− 2
p )‖F−1(ωφ)‖Lp′ .
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Taking ω = |ξ|s in the above inequality, we obtain the desired results. �

Remark 1. Based on lemma 1, the so called Strichartz estimates follows easily. The
Strichartz estimates and the wellposedness of (1) followed from them will appear in
[7].

Lemma 2 (see [6]). Let α > 0, s ∈ Iα and let

p =
n(α + 2)
αs + n

It holds

(7) ‖|f |αf‖Ḣs
p′
≤ C‖f‖α+1

Ḣs
p

,

and
‖|f |αf − |g|αg‖Ḣs

p′
≤ C‖f − g‖Ḣs

p

[
‖f‖α

Ḣs
p

+ ‖g‖α
Ḣs

p

]
.

Lemma 2 was proved in [6] with the help of a series of lemmas. Here we put
great emphasis on the following one of those lemmas because Iα is determined partly
by it.

Lemma 3 (see[8]). Let α > 0, s > 0 and 1 < r < ∞ such that

(8) s < min(
n

r
, α + 1), (α + 1)(

n

r
− s) ≤ n.

Define t by
t =

n

s + (α + 1)(n
r − s)

a) Then, for all f ∈ Ḣs
r we have:

(9) ‖|f |αf‖Ḣs
t
≤ C‖f‖α+1

Ḣs
r

and

(10) ‖|f |α+1‖Ḣs
t
≤ C‖f‖α+1

Ḣs
r

.

b) Furthermore, if α is an even integer (respectively an odd integer) then (9)
(respectively (10)) holds without the restriction s < α + 1.

Remark 2. We point out that we get (7) if we take r = p, t = p′ in (9).

3. Proof of the main result

We shall make use of the fixed point theorem to solve the equivalent integral
equation

u(t) = S(t)φ− i

∫ t

0

S(t− τ)|u|αu(τ))dτ.
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Since the proof of 1) and 2) is all the same, we will prove 1) only.
Define

T (u) = S(t)φ− i

∫ t

0

S(t− τ)|u|αu(τ))dτ

Let α be admissible and s ∈ Iα. First by virtue of Lemma 1 we have

tθ‖T (u)‖Ḣs
p

≤ tθ‖S(t)φ‖Ḣs
p

+ tθ
∫ t

0

‖S(t− τ)|u|αu(τ))‖Ḣs
p
dτ

≤ ‖u0‖Es + Ctθ
∫ t

0

|t− τ |−
2n−d

4 (1− 2
p )‖|u|αu(τ)‖Ḣs

p′
dτ.

Hence from the first inequality of the proposition it follows that

tθ‖T (u)‖Ḣs
p

≤ ε + Ctθ
∫ t

0

|t− τ |−
2n−d

4 (1− 2
p )‖u‖α+1

Ḣs
p

dτ

≤ ε + C‖u‖α+1
Es tθ

∫ t

0

|t− τ |−
2n−d

4 (1− 2
p )|τ |−θ(α+1)dτ

≤ ε + C‖u‖α+1
Es t−

2n−d
4 (1− 2

p )−θα

∫ t

0

|1− τ

t
|−

2n−d
4 (1− 2

p )|τ
t
|−θ(α+1)dτ

≤ ε + C‖u‖α+1
Es t1−

2n−d
4 (1− 2

p )−θα

∫ 1

0

|1− τ |−
2n−d

4 (1− 2
p )|τ |−θ(α+1)dτ

≤ ε + CB(1− 2n− d

4
(1− 2

p
), 1− θ(α + 1))‖u‖α+1

Es t1−
2n−d

4 (1− 2
p )−θα.

where B(m,n) (m,n > 0) is the well-known Beta function.
Taking θ = 1

α −
2n−d
4α (1− 2

p ), we have 1− 2n−d
4 (1− 2

p )− θα = 0 and

(11)
2n− d

4
(1− 2

p
) < 1, θ(α + 1) < 1.

It follows that

tθ‖F (u)‖Ḣs
p
≤ ε + C‖u‖α+1

Es .

Thus we have

‖T (u)‖Es ≤ ε + C‖u‖α+1
Es .

Choose ε ≤ ( 1
C2α+1 )

1
α and let Bε = {u ∈ Es, ‖u‖Es ≤ 2ε}, then L(Bε) ⊆ Bε.

Next as above, by using the second inequality of the proposition we derive

‖|u|αu− |v|αv‖Ḣs
p′
≤ C‖u(τ, ·)− v(τ, ·)‖Ḣs

p
[‖u(τ, ·)‖α

Ḣs
p

+ ‖v(τ, ·)‖α
Ḣs

p
],
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so that

‖|u|αu− |v|αv‖Ḣs
p′
≤ Cτ−θ(α+1)‖u− v‖Es [‖u‖α

Es + ‖v‖α
Es ].

Assuming that ‖u‖Es < 2ε and ‖v‖Es < 2ε, the same reasoning as above gives that

‖T (u)− T (v)‖Es ≤ Cεα+1‖u− v‖Es ≤ 1
2
‖u− v‖Es

for ε small enough. This implies that T is a contraction map from Bε into Bε.
Thus, by the Banach’s fixed point theorem, for all admissible α and for all s ∈ Iα,
there exists a unique solution u ∈ Es of (1) with ‖u‖Es < 2ε. �

Remark 3.
(1) Till now, we find that Iα is determined by (11) and lemma 3, especially (8).
(2) We recall that if a = 0, Authors in [6] obtained global solutions with initial data
φ in H s̃(Rn). In fact, assume the admissible α satisfies the following additional
condition:

α ≥ αc =
4

n− 2
.

(αc is the so called H1 crtical value.) and let φ ∈ H s̃(Rn) where

s̃ > sc =
n

2
− 2

α
,

then, thanks to Sobolev embedding, one can check that there always exists s ∈ Iα

such that H s̃ ⊂ Ḣs
p . So, for 0 < t < T we have

tθ‖S(t)φ‖Ḣs
p
≤ tθ‖S(t)φ‖H s̃ ≤ tθ‖φ‖H s̃ ≤ T θ‖φ‖H s̃ .

Choosing T small enough, it follows that ‖S(t)φ‖Es ≤ ε and from the local version
of the theorem there exists a unique solution u ∈ Es with φ ∈ H s̃(Rn) as initial
data.

As for general a, the critical indices sc = n
2 (1 − 8

(2n−d)α ), but it is not easy to
determine s̃, we’ll have to leave it over.
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