• Title/Summary/Keyword: Perturbation Technique

Search Result 272, Processing Time 0.026 seconds

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

On a Stability Region of Liner Time-Varying Systems (선형시변 시스템의 안정도 영역에 관하여)

  • 최종호;장태정
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.484-489
    • /
    • 1988
  • Sufficient conditions concerning the perturbation region of system parameters, which guarantee the asymptotic stability of linear time- varying systems, are presented. These conditions are obtained by Lyapunov function approach for continuous-time and discrete-time systems. Also, a computational algorithm using nonlinear programming is proposed for finding the maximum perturbation region which satisfies the sufficient condition for the continuous-time systems. The technique of finding the solution for the continuous-time systems can also be applied to the discrete-time systems. In the continuous-time case, it is shown by an example that the method proposed in this paper yields much larger perturbation region of parameters than other previously reported results. An example of the perturbation region of system paramters for the discrete-time system is also given.

  • PDF

SOLUTION OF TENTH AND NINTH-ORDER BOUNDARY VALUE PROBLEMS BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • In this paper, we apply homotopy perturbation method (HPM) for solving ninth and tenth-order boundary value problems. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed homotopy perturbation method solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method.

Application of the first-order perturbation method to optimal structural design

  • Lee, Byung Woo;Lim, O Kaung
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.425-436
    • /
    • 1996
  • An application of the perturbation method to optimum structural design with random parameters is presented. It is formulated on the basis of the first-order stochastic finite element perturbation method. It also takes into full account the stress, displacement and eigenvalue constraints, together with the rates of change of the random variables. A method for calculating the sensitivity coefficients in regard to the governing equation and the first-order perturbed equation has been derived, by using a direct differentiation approach. A gradient-based nonlinear programming technique is used to solve the problem. The numerical results are specifically noted, where the stiffness parameter and external load are treated as random variables.

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.283-291
    • /
    • 2019
  • Accurately determining the natural frequencies and mode shapes of a structural floor is an essential step to assess the floor's human-induced vibration serviceability. In the theoretical analysis, the prestressed concrete floor can be idealized as a multi-span continuous anisotropic plate. This paper presents a new analytical approach to determine the natural frequencies and mode shapes of a multi-span continuous orthotropic plate. The suggested approach is based on the combined modal and perturbation method, which differs from other approaches as it decomposes the admissible functions defining the mode shapes by considering the intermodal coupling. The implementation of this technique is simple, requiring no tedious mathematical calculations. The perturbation solution is validated with the numerical results.

Finite Element Modeling of Perturbation Fields due to Colonies of Stress Corrosion Cracks(SCCs) in a Gas Transmission Pipeline (가스공급배관에서 응력부식균열 군에 의해 교란된 자속의 유한요소 모델링)

  • Yang, Sun-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.493-500
    • /
    • 2001
  • The detection of axial cracks using conventional MFL pig is a significant challenge in the gas pipeline inspection. In this study, a technique using interaction of circumferentially induced torrents with axial stress corrosion crack is presented. The feasibility of this technique is investigated using finite element modeling. Finite element analysis of such interaction is a difficult problem in terms of both computation time and memory requirements. The challenges arise due to the nonlinearity of material properties, the small sire of tight cracks relative to that of the magnetizer, and also time stepping involved in modeling velocity effects. This paper presents an approach based on perturbation methods. The overall analysis procedure is divided into 4 simple steps that can be performed sequentially. Modeling results show that this technique can effectively detect colonies of SCC as well as single SCC.

  • PDF

AN INITIAL VALUE TECHNIQUE FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH A SMALL NEGATIVE SHIFT

  • Rao, R. Nageshwar;Chakravarthy, P. Pramod
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.131-145
    • /
    • 2013
  • In this paper, we present an initial value technique for solving singularly perturbed differential difference equations with a boundary layer at one end point. Taylor's series is used to tackle the terms containing shift provided the shift is of small order of singular perturbation parameter and obtained a singularly perturbed boundary value problem. This singularly perturbed boundary value problem is replaced by a pair of initial value problems. Classical fourth order Runge-Kutta method is used to solve these initial value problems. The effect of small shift on the boundary layer solution in both the cases, i.e., the boundary layer on the left side as well as the right side is discussed by considering numerical experiments. Several numerical examples are solved to demonstate the applicability of the method.

A Study on the Sensor Placement for Structural Damage Detection (구조물의 손상탐지를 위한 센서위치 연구)

  • Choi, Young-Jae;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.938-945
    • /
    • 2003
  • In the present study, the inverse perturbation method is applied to the structural damage detection in conjunction with a system condensation technique. The system condensation technique is adopted to r esolve the problem due to the incomplete measurement of the degrees-of-freedom (DOFs) in a natural mode. However, the numerical difficulty may arise in the system condensation when the DOFs to be measured are not properly selected. Thus, the issue of sensor placement for structural damage detection, in the framework of the condensation technique-based inverse perturbation method, is considered in this study. Also, a methodology to measure the number of sensors required to obtain reliable damage detection is proposed and then verified through some illustrative example problem.

A Study on Errors and Selection of Associated Parameters in Model Simplification Using Singular Perturbation Technique (시이섭동기법을 이용한 모델 절감화의 오금 산정 및 관련 파라미터의 추정에 관한 연구)

  • 천희영;박귀태;이기상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.2
    • /
    • pp.43-49
    • /
    • 1983
  • In this study, model simplification problem using singular perturbation technique is considered. The correctness and errors of simplified model which is obtained by the use of this technique, depends upon the order and the time scaling factor of the simplified model But, unfortunately, there is no explicit criteria for selections of these parameters. In this paper, error equations are derived and expanded by using the useful properties of $L_2$-norm. Then, new criteria for selecting the order of the simplified model and time scaling factor with respect to error bound are suggested. Since these criteria, newly proposed in this study, have strong concern about error bound, it can be used to choose the minimum order of the simplified model and time scaling factor with respect to given error bound. Conversely, if the order of the simplified model and time scaling factor are given, the error induced by the simplification can also be computed easily.