This paper considers the lens distortions such as a fisheye distortion and a perspective distortion. While a fisheye lens has a wide field-of-view, it causes a large distortion to the images. Regardless of a fisheye lens or a rectilinear lens, a lens generates perspective distortion in a vertical direction when the lens views in an upward direction or downward direction. These distortions deform images differently from human visual functions. Therefore, this paper presents a method to correct the distortions, and whereby, the research in this paper enlarges choices of images to image processing algorithm that may select the distorted images and the corrected images depending on applications. An infinite polynomial model is employed in the fisheye radial distortion correction, and the vertical perspective distortion correction is done by using a vanishing point. The methods introduced in this paper are implemented on the images captured by a rear-view camera installed on a vehicle and showed their robustness of the correction.
In this paper, we propose a method for correction of perspective distortion on a taken image. An image taken by a camera is caused perspective distortion depending on the direction of the camera when objects are projected onto the image. The proposed method in this paper is to obtain the normal vector of the plane through the depth information using a depth camera and calculate the direction of the camera based on this normal vector. Then the method corrects the perspective distortion to the view taken from the front side by performing a rotation transformation on the image according to the direction of the camera. Through the proposed method, it is possible to increase the processing speed than the conventional method such as correction of perspective distortion based on color information.
When the planar area is captured by the depth camera, the shape of the plane in the captured image has perspective projection distortion according to the position of the camera. We can correct the distorted image by the depth information in the plane in the captured area. Previous depth information based perspective distortion correction methods fail to satisfy the real-time property due to a large amount of computation. In this paper, we propose the method of applying the conversion table selectively by measuring the motion of the plane and performing the correction process by parallel processing for correcting perspective projection distortion. By appling the proposed method, the system for correcting perspective projection distortion correct the distorted image, whose resolution is 640x480, as 22.52ms per frame, so the proposed system satisfies the real-time property.
본 논문에서는 집적영상의 획득 과정에서 발생하는 기하학적 왜곡 중 투영 왜곡을 교정하는 방법을 제안한다. 제안된 방법에서는 집적영상의 스펙트럼 특성을 이용하여 왜곡 교정을 수행한다. 집적영상의 요소영상들이 대체로 주기적으로 반복됨에 따라 집적영상을 푸리에 변환하였을 경우 그 스펙트럼이 임펄스열로 나타난다. 반면, 왜곡이 존재하는 영상에서는 임펄스열이 뚜렷하게 나타나지 않는 특성이 있다. 따라서 집적영상의 푸리에 변환을 통해 얻어진 스펙트럼의 특성을 이용하여 투영 왜곡 파라미터를 찾아내고 이를 이용하여 교정하는 방법을 제안한다. 실험을 통하여 제안된 방법이 왜곡을 효과적으로 교정하는지 검증한다.
For visual measurement under dynamic scenarios, a zoom lens camera is more flexible than a fixed one. However, the challenges of distortion prediction within the whole focal range limit the widespread application of zoom lens cameras greatly. Thus, a novel sequential distortion correction method for a zoom lens camera is proposed in this study. In this paper, a distortion assessment method without coupling effect is depicted by an elaborated chessboard pattern. Then, the appropriate distortion correction model for a zoom lens camera is derived from the comparisons of some existing models and methods. To gain a rectified image at any zoom settings, a global distortion correction modeling method is developed with bundle adjustment. Based on some selected zoom settings, the optimized quadratic functions of distortion parameters are obtained from the global perspective. Using the proposed method, we can rectify all images from the calibrated zoom lens camera. Experimental results of different zoom lens cameras validate the feasibility and effectiveness of the proposed method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권9호
/
pp.2312-2325
/
2013
In this paper, we propose a preprocessing method that it is to correct the distortion of text area in Korean signboard images as a preprocessing step to improve character recognition. Distorted perspective in recognizing of Korean signboard text may cause of the low recognition rate. The proposed method consists of four main steps and eight sub-steps: main step consists of potential vertical components detection, vertical components detection, text-boundary estimation and distortion correction. First, potential vertical line components detection consists of four steps, including edge detection for each connected component, pixel distance normalization in the edge, dominant-point detection in the edge and removal of horizontal components. Second, vertical line components detection is composed of removal of diagonal components and extraction of vertical line components. Third, the outline estimation step is composed of the left and right boundary line detection. Finally, distortion of the text image is corrected by bilinear transformation based on the estimated outline. We compared the changes in recognition rates of OCR before and after applying the proposed algorithm. The recognition rate of the distortion corrected signboard images is 29.63% and 21.9% higher at the character and the text unit than those of the original images.
$180^{\circ}$ 이상의 영역을 획득하는 어안렌즈(fish-eye lens)는 최소의 카메라로 최대 시야각을 확보할 수 있는 장점으로 인해 차량 장착 시도가 늘고 있다. 운전자에게 현실감 있는 영상을 제공하고 센서로 이용하기 위해서는 캘리브레이션을 통해 방사왜곡(radial distortion)에 따른 기하학적인 왜곡 보정이 필요하다. 그런데 차량용 어안렌즈의 경우, 대각선 어안렌즈로 일반 원상 어안렌즈로 촬영한 둥근 화상의 바깥둘레에 내접하는 부분을 잘라낸 직사각형 영상과 같으며, 수직, 수평 화각에 따라 왜곡이 비대칭구조로 설계되었다. 본 논문에서는, 영상의 특징점(feature points)을 이용하여 차량용 어안렌즈에 적합한 카메라 모델 및 캘리브레이션 기법을 소개한다. 캘리브레이션한 결과, 제안한 방법은 화각이 다른 차량용 어안렌즈에도 적용 가능하다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권8호
/
pp.3981-4004
/
2019
This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.
180도 이상의 영역을 획득하는 어안렌즈(fisheye lens)는 최소의 카메라로 최대 시야각을 확보할 수 있는 장점으로 인해 차량 장착 시도가 늘고 있다. 이와 같이 어안렌즈를 통해 시야를 확보하고, 영상센서로 사용하기 위해서는 캘리브레이션 작업이 선행되어야 하며, 운전자에게 현실감 있는 영상을 제공하기 위해서는 이를 이용하여 방사왜곡(radial distortion)에 따른 기하학적인 왜곡 보정이 필요하다. 본 논문에서는 비대칭 왜곡을 가진 180도 이상 화각의 차량용 대각선 어안렌즈를 위해 영상 손실을 최소화하는 왜곡 보정 기법을 제안한다. 왜곡 보정은 왜곡 모델이 포함된 카메라 모델을 설정하고 캘리브레이션 과정을 통해 카메라 파라미터를 구한 후 왜곡이 보정된 뷰를 생성하는 과정으로 이루어진다. 먼저 왜곡모델로서 비선형의 왜곡 형상을 모방한 FOV(Field of View)모델을 사용한다. 또한 비대칭 왜곡렌즈의 경우 운전자의 좌우 시야각 확보에 중점을 두어 수직 화각보다 수평 화각이 크게 설계되었기 때문에 영상의 장축, 단축의 비율을 일치시킨 후 비선형 최적화 알고리즘을 사용하여 카메라 파라미터를 추정한다. 최종적으로 왜곡이 보정된 뷰 생성 시 역방향 사상과 함께 수평, 수직 방향에 대한 왜곡 보정 정도를 제어 가능하도록 함으로써 화각이 180도 이상인 영상에 대해서 핀홀 카메라 모델을 적용하여 2차원 평면으로 영상을 보정하는 경우 발생하는 영상 손실을 최소화하고 시각적 인지도를 높일 수 있도록 하였다.
본 논문은 O링의 치수 측정에 있어 고가의 대 중형 머신비전 장비를 대체할 수 있는 소형 머신 비전 검사 장비에 기반한 O링 부품 내 외경 측정 알고리즘을 제안한다. 백라이트 조명하에 하나의 CCD 카메라를 이용하여 측정 평면으로 부터 영상을 획득하는 소형 머신 비전 검사장비에 의해 획득된 영상을 제안한 영상처리 기법 알고리즘을 이용하여 O링의 외경 및 내경치수를 측정한다. 치수 측정의 정확도를 높이기 위해 렌즈계 왜곡 보정과 원근 왜곡 보정을 소프트웨어적 기법으로 보정 하였고 O링 형상을 고려하여 타원정합 모델을 적용하였으며 보다 타원 정합의 신뢰성을 높이기 위해 RANSAC알고리즘을 적용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.