• Title/Summary/Keyword: Personal Air Vehicle(PAV)

Search Result 31, Processing Time 0.023 seconds

Overview on High Speed Rotorcraft Concepts for the Personal Aerial Vehicle(PAV) Applications (PAY 적용을 위한 고속 회전익기 개념 개괄)

  • Hawang, Chang-Jeon;Ahn, Byung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.6-13
    • /
    • 2007
  • PAV(Personal Air Vehicle) can be an alternative of the saturated ground transportation in future and can be available in any time and anywhere. This paper describes some overview on high speed rotorcraft concepts for the PAV applications. First the requirement of PAV is surveyed. Then the existing concepts of high speed rotorcrafts are reviewed. Several on-going projects are summarized. Finally! technical issues of high speed rotorcraft to apply to PAV platform are explored.

  • PDF

Technical Survey on Propulsion Systems for Personal Air Vehicles (Personal Air Vehicle의 추진시스템에 대한 기술적 고찰)

  • Yun, Dong-Ik;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.56-63
    • /
    • 2009
  • In this paper, we present technical survey results on propulsion systems for Personal Air Vehicles (PAV). Reciprocating engines are suitable for current PAVs because of their superior efficiency and price advantages, except they produce noise problems. Turbo-Shaft engines are suitable for VTOL PAVs because of high specific power and wide operating range even though they are expensive. However, fuel cells and batteries may replace conventional engines in the near future.

Analysis of Effects of Lightning on PAV Using Computational Simulation and a Proposal to Establish Certification Guidance (전산 시뮬레이션을 통한 PAV 낙뢰 영향성 분석 및 인증기술에 관한 연구)

  • Park, Se-Woong;Kim, Yun-Gon;Kang, Yong-Seong;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.60-69
    • /
    • 2019
  • Companies around the world are actively developing Personal Air Vehicle (PAV) to solve the serious social problem of traffic jams. Airworthiness certification for PAV is required, since it is a manned vehicle. As with aircraft, the critical threat to the safe operation of PAV is lightning strike with strong thermal load and magnetic fields. Lightning certification issue also remains important for PAV, since there are still insufficient development of PAV-related lightning certification technologies, guidelines, and requirements. In this study, the SAE Aerospace Recommended Practice (ARP), an international standard certification guideline recognized by the Federal Aviation Administration (FAA), was analyzed. In addition, the guideline of lightning certification was applied to a PAV. The impact of lightning on PAV was also analyzed through computational software. Finally, the basis for the establishment of the PAV lightning certification guidance was presented.

The Status and outlook of Propulsion System for Electric Powered Personal Air Vehicles (전기 동력 Personal Air Vehicle의 추진시스템 현황 및 전망)

  • Lee, Sun-Kyoung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.183-186
    • /
    • 2011
  • In this paper, we present some results of power analyses, and weight estimation on electric propulsion systems for Personal Air Vehicles(PAV) applications. When hybrid electric propulsion is adopted, its power performance using fuel cells and batteries is inferior to that of internal combustion engines for 1,000 kg PAV. However, hybrid electric propulsion systems may replace IC engines when energy density and power density is over $0.75kW{\cdot}hr/kg$and 2.5 kW/kg, respectively.

  • PDF

A Study on Hovering Performance of Personal Air Vehicle According to Distance between Rotor Blade Axis via Computational Fluid Dynamics (전산유체역학을 통한 PAV의 로터 블레이드 축간거리에 따른 호버링 성능 변화 연구)

  • Yoon, Jaehyun;Noh, Wooseung;Doh, Jaehyeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.53-60
    • /
    • 2022
  • In this study, the conceptual design and performance evaluation of a personal air vehicle (PAV) is presented, which is a potential futuristic individual transportation. The blade element theory (BET) is employed to compute a rotational velocity. A computational fluid dynamics (CFD) simulation is performed to investigate the difference in the thrust performance in the rotor axis distance of a quad-copter PAV in hovering. Modal analysis is performed to create a Campbell diagram to investigate critical speed. Consequently, a quad-copter PAV changes the aerodynamics thrust and critical velocity according to the rotor axis distance.

Propulsion System for PAV Development : Now and Tomorrow (PAV용 미래형 추진기관의 현황 및 전망)

  • Yun, Dong-Ik;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.305-308
    • /
    • 2009
  • In this paper, we present the status and prospect for PAV propulsion system. Reciprocating engines are suitable for current PAV because of its efficiency and price advantages. However, fuel cells and batteries may replace conventional engines in the near future.

  • PDF

Noise Analysis for the Operation of the eVTOL PAV using AEDT (Aviation Environmental Design Tool) (AEDT(Aviation Environmental Design Tool)를 이용한 전기추진 수직이착륙형 PAV 운영을 위한 소음 분석)

  • Yun, Ju-Yeol;Lee, Bong-Sul;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.265-272
    • /
    • 2019
  • In this paper, we selected commuting scenarios in the most congested metropolitan area in Korea, and conducted noise analysis during personal air vehicle (PAV) operation using aviation environmental design tool (AEDT)software which was developed by Federal Aviation Administration (FAA). Noise is the second important factor after safety in order to operate PAVs through concepts such as ODM (on-demand mobility) introduced by National Aeronautics and Space Administration (NASA). Noise analysis were performed by modeling low-noise ePAVs as commercial helicopters and predicted residential suitability in order to resolve problems in which accurate NPD (noise power distance) data from PAVs were not released. The application of noise reduction technology such as electric propulsion has significantly reduced noise exposure levels and has reached the conclusion that commuting with PAVs is feasible without noise problems in the metropolitan area.

Prerequisites for Realizing Urban Air Traffic (UAM) and Personal Air Vehicle (PAV) (도심항공교통(UAM)과 개인용 비행체(PAV) 실현화를 위한 선행 조건에 대한 전망)

  • Choi, Jeongho;Choi, Young-Moon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.147-153
    • /
    • 2020
  • This study is aimed at a basic infrastructure for realizing urban air mobility (UAM) and personal air vehicle (PAV), which have recently been high interest as new means of transportation. The development of UAM and PAV technologies is a field of a high added value that the world is competitively pushing for the world. However, the three most fundamental aspects are the establishing an aviation certification system, finding reliable manufacturers having advanced technical abilities, and the training/securing of professional manpower. Above all, the aviation certification system will be established for the first time. Based on the certification system, it will be possible to realize the government's policy goal of introducing new means of transportation, including the production of aircraft and to realize commercialization that meets international standards that satisfy conformity and compliance. In addition, finding reliable manufacturers, fostering professionals, and establishing an educating system for stable supplying of the professionals are main projects to become a leading country in the field.

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact (도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준)

  • Jin, Seok-Jun;Oh, Young-Hoon;Ju, Da Young
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.3-20
    • /
    • 2022
  • Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

Preliminary Analysis of Power Systems for 1-ton class Electric Powered PAV (전기추진 1톤급 Personal Air Vehicle의 동력시스템 예비 분석)

  • Yun, Dong-Ik;Huh, Hwan-Il;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, we present some results of technical surveys, power analyses, and weight estimation on electric propulsion systems for 1-ton class Personal Air Vehicles(PAV) applications. When hybrid electric propulsion is adopted, its power performance using fuel cells and batteries in inferior to that of internal combustion engines. However, hybrid electric propulsion systems may replace IC engines when energy density and power density reach 0.75 kW$^*$hr/kg and 2.5 kW/kg, respectively.