DOI QR코드

DOI QR Code

Derivation of Constraint Factors Affecting Passenger's In-Vehicle Activity of Urban Air Mobility's Personal Air Vehicle and Design Criteria According to the Level of Human Impact

도심항공모빌리티 비행체 PAV 탑승자 실내행위에 영향을 미치는 제약 요소 도출 및 인체 영향 수준에 따른 설계 기준

  • 진석준 (한국항공대학교 항공운항관리학) ;
  • 오영훈 (국민대학교 디자인사이언스학과 AI디자인랩) ;
  • 주다영 (국민대학교 디자인사이언스학과 AI디자인랩)
  • Received : 2021.08.30
  • Accepted : 2021.11.09
  • Published : 2022.03.31

Abstract

Recently, prior to the commercialization of urban air mobility (UAM), the importance of R&D for air transportation-related industries in urban areas has significantly increased. To create a UAM environment, research is being conducted on personal air vehicles (PAVs). They are key means of air transportation, but research on the physical factors influencing their passengers is relatively insufficient. In particular, because the PAV is expected to be used as a living space for the passengers, research on the effects of the physical elements generated in the PAV on the human body is essential to design an interior space that supports the in-vehicle activities of the passengers. Therefore, the purpose of this study is to derive the constraint factors that affect the human body due to the air navigation characteristics of the PAV and to understand the impact of these constraint factors on the bodies of the passengers performing in-vehicle activities. The results of this study indicate that when the PAV was operated at less than 4,000 ft, which is the operating standard, the constraint factors were noise, vibration, and motion sickness caused by low-frequency motion. These constraint factors affect in-vehicle activity; thus, the in-vehicle activities that can be performed in a PAV were derived using autonomous cars, airplanes, and PAV concept cases. Furthermore, considering the impact of the constraint factors and their levels on the human body, recommended constraint factor criteria to support in-vehicle activities were established. To reduce the level of impact of the constraint factors on the human body and to support in-vehicle activity, the seat's shape and built-in functions of the seat (vibration reduction function, temperature control, LED lighting, etc.) and external noise reduction using a directional speaker for each individual seat were recommended. Moreover, it was suggested that interior materials for noise and vibration reduction should be used in the design of the interior space. The contributions of this study are the determination of the constraint factors affecting the in-vehicle PAV activity and the confirmation of the level of impact of the factors on the human body; in the future, these findings can be used as basic data for suitable PAV interior design.

최근 도심항공모빌리티(UAM) 상용화에 앞서 도심 내 항공 교통수단 관련 산업에 대한 연구개발 중요성이 급격히 증가하고 있다. 도심항공모빌리티(UAM) 환경을 조성하기 위해서 핵심 항공 이동 수단 비행체인 개인용 항공기(PAV) 기체에 관한 연구가 수행되고 있으나, 탑승자 관점의 연구가 상대적으로 부족한 상황이다. 특히 PAV는 탑승자의 새로운 생활공간으로 활용될 것으로 예상되기 때문에 탑승자의 실내행위를 지원하는 실내공간 설계를 위해서는 PAV 기체에서 발생하는 물리적 요소가 인체에 미치는 영향에 관한 연구가 필수적으로 이루어져야 한다. 이에 본 연구의 목적은 PAV의 공중 운항 특성으로 인해 인체에 영향을 주는 제약 요소를 도출하고, 이러한 제약 요소가 실내행위를 수행하는 탑승자 인체에 미치는 영향을 파악하는 것이다. 본 연구 결과, 항공 이동 수단 비행 기체 PAV는 4,000ft 이하에서 운항해야 하는 기준에 따라, 운항고도에 따른 제약 요소는 소음, 진동, 저주파 운동에 의한 멀미로 나타났다. 이러한 제약 요소가 실내행위에 영향을 미친다는 관점에서 PAV에서 행할 수 있는 실내행위를 자율주행 자동차, 비행기, PAV 컨셉 사례를 활용하여 도출하고 인체에 미치는 영향과 수준을 고려하여 실내행위 지원을 위한 제약 요소 권장기준을 설정하였다. 또한 실내행위 지원을 위한 제약 요소의 인체 영향 수준을 감소시키기 위해서는 시트의 형태 및 내장기능(진동 저감 기능, 온도조절, LED조명 등), 개인 좌석별 지향성 스피커를 활용한 외부소음 감소, 소음과 진동 감소를 위한 내장재 등을 실내공간 설계에 반영해야 함을 제시하였다. 본 연구는 PAV 실내행위에 영향을 주는 제약 요소를 도출하였고, 인체에 미치는 영향 수준을 확인하였으며, 추후 PAV 실내 설계 시 기초자료로써 활용할 수 있다는 점에서 의미가 있다.

Keywords

Acknowledgement

이 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임('10079996').

References

  1. Aerial view of the Opener #BlackFly V3 cockpit. (2019). [Website]. Retrieved from https://www.facebook.com/photo?fbid=634952163679963&set=a.205417933300057
  2. Ahn, S. J. (2014). Human body vibration ISO 2631-1. Journal of KSNVE, 24(6), 36-40(5 pages).
  3. Airbus shares a glimpse of its flying taxi interior The latest Vahana prototype has a finished interior. (2019). [Website]. Retrieved from https://www.engadget.com/2019-05-22-airbus-vahana-flying-taxi-interior.html
  4. Aircraft information. (n.d.). [Website]. Retrieved from https://m.flyasiana.com/C/KR/KO/contents/about-the-aircraft
  5. Aircraft information. (n.d.). [Website]. Retrieved from https://www.koreanair.com/kr/ko/in-flight/aircraft
  6. AirisOne autonomous 'air taxi' (2018). [Website]. Retrieved from https://wordlesstech.com/airisone-autonomous-air-taxi/
  7. All-Electric Air Mobility. (n.d.). [Website]. Retrieved from https://www.jobyaviation.com/
  8. Ann, N., Renee, C., & Wenbi, W. (2015). Research Requirements for Modelling of Auditory Communication in Critical Control Spaces on RCN Platforms. (Report No. DRDC-RDDC-2015-R171) Toronto: DRDC (Defence Research and Development Canada) - Toronto Research Centre.
  9. Arenas, J. P. (2016). Applications of Acoustic Textiles in Automotive/Transportation. DOI: 10.1007/978-981- 10-1476-5_7.
  10. Audi joins Airbus and Italdesign on flying car project Audi unveils futuristic city car 'AI:ME'(아우디, 미래형 도시 자동차 'AI:ME' 공개). (2019). [Website]. Retrieved from https://hypebeast.kr/2019/4/aimeaudi-aime-city-car-of-the-future-concept-electric-autonomous-plants
  11. Autonomous Driving Seat. Now, It's the Seat that's Moving. (2018). [Website]. Retrieved from https://www.youtube.com/watch?v=PYZJx3Fuzv4
  12. Bell and Uber Making Air Taxi a Reality (2019). [Website]. Retrieved from https://blog.123.design/engineering/bell-and-uber-making-air-taxi-a-reality/
  13. Bell Nexus 6HX. (n.d.). [Website]. Retrieved from https://evtol.news/bell-air-taxi
  14. BMW i3 Urban Suite is like a first-class seat on wheels. (2020). [Website]. Retrieved from https://www.pocket-lint.com/cars/news/bmw/150730-bmw-i3-urban-suite-ces-2020
  15. BMW Vision Next 100 Concept (2016) - Design Sketches. (2016). [Website]. Retrieved from https://www.netcarshow.com/bmw/2016-vision_next_100_concept/1024x768/wallpaper_42.htm
  16. Bohrmann, D. (2019). Lie down! Fighting motion sickness. Retrieved from https://www.daimler.com/magazine/mobility/motion-sickness-kinetosis-product-development.html
  17. Bose 'Beyond Sound' Experience During Ces 2017. (2017). [Website]. Retrieved from http://www.multivu.com/players/English/8010651-bose-beyond-sound-ces-2017/
  18. CES 2020 Hyundai PBV (Purpose Built Vehicle). (2020). [Website]. Retrieved from https://youtu.be/m2mdnQ_g9CE?list=TLGGLWX2bJX8imcxOTA1MjAyMQ
  19. Cheung, W. S. (2010) Ntroduction to measuring and evaluating whole body vibration(전신진동의 측정 및 평가 방법에 대한 소개). Journal of KSNVE (The Korean Society for Noise and Vibration Engineering), 20(3), 13-19(7 page).
  20. Choi, C. H. (2021). PAV(개인용 항공기) Chungcheong: KISTEP (Korea Institute of S&T Evaluation and Planning) 2021-05.
  21. Choi, H. K., Kim, S. T., & Kim, J. I. (2007). A study on the methodology to evaluate the spatial distribution of the aircraft noise(항공기 소음 공간분포 해석을 위한 방법론 연구). Korean Society of Environmental Engineers, (n.d.), pp. 1661-1664.
  22. CITROEN 19_19 CONCEPT, LE VOYAGE IN E-COMFORT MODE. (2019). [Website]. Retrieved from https://int-media.citroen.com/en/citro%C3%ABn1919-concept-le-voyage-%C3%AB-comfort-mode
  23. Davis, J. R., Johnson, R., Stepanek, J., & Fogarty, J. A. (Eds.). (2008). Fundamentals of aerospace medicine. Lippincott Williams & Wilkins.
  24. Elastoflex. (n.d.). [Website]. Retrieved from https://plastics-rubber.basf.com/global/en/performance_polymers/products/elastoflex_w.html
  25. EmbraerX Media gallery. (n.d.). [Website]. Retrieved from https://embraerx.embraer.com/global/en/media
  26. Enforcement regulations of the Aviation Safety law(항공안전법 시행규칙). (2021). Enforcement Regulation 199(시행규칙 제199조) minimum flight altitude(최저 비행고도). Retrieved from https://www.law.go.kr/법령/항공안전법시행규칙/(20210316,00838, 20210316)/제199조
  27. Environmental calculator distance attenuation(환경계산기 거리감쇠). (2013). [Websie]. Retrieved from https://www.konetic.or.kr/dataroom/calculator_view.asp?1=1&gotopage=1&unique_num=1067
  28. Estate, S., Choi, S. S., Lee, K. H., Kim, Y. K., & Sohn, J. H. (1999). Effects of long-term exposure to noise on psychophysiological responses(소음에 장기 노출되었을 때 나타나는 심리생리적 효과). In Proceeding of Autumn conference of Korea Society for Emotion and Sensibility, pp. 211-215.
  29. e-volo unveils volocopter 2X, the 18 rotor flying taxi set for use in 2018. (2017). [Website]. Retrieved from https://www.designboom.com/technology/e-volovolocopter-2x-04-05-2017/
  30. Faster, quieter, greener, cheaper. (n.d.). [Website]. Retrieved from https://www.vertical-aerospace.com/va-x4/
  31. Faurecia Wants To Reimagine Interiors Of Autonomous Cars. (2016). [Website]. Retrieved from https://www.carscoops.com/2016/08/faurecia-wants-to-reimagine-interiors/
  32. Federal Aviation Administration. (n.d.). PART 36 - NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION. -Appendix K to Part 36 - Noise Requirements for Tiltrotors Under Subpart K. Retrieved from https://www.law.cornell.edu/cfr/text/14/appendix-K_to_part_36
  33. Future Jaguar and Land Rover Vehicles Will Help Reduce Motion Sickness. (2018). [Website]. Retrieved from https://www.jaguarlandrover.com/news/2018/11/future-jaguar-and-land-rover-vehicles-will-help-reduce-motion-sickness
  34. Hall, E. T. (1963). A system for the notation of proxemic behavior 1. American Anthropologist, 65(5), 1003-1026. DOI: 10.1525/aa.1963.65.5.02a00020
  35. Han, G. H., & Kim, H. T. (2011). Cause of cybersickness induction and reduction method. The Korean Journal of Cognitive and Biological Psychology, 23(2), 290-292.
  36. Harman's Connected Car Solution(하만의 커넥티드 카 솔루션). (n.d.). [Website]. Retrieved from https://www.samsung.com/sec/harman/connected-car/
  37. Human centered-design, simple for everyone. (n.d.). [Website]. Retrieved from https://embraerx.embraer.com/global/en/evtol
  38. Hwang, C. J. (2018). Status and challenges of urban air mobility development(도심용 공중 모빌리티 개발 현황 및 과제). Current Industrial and Technological Trends in Aerospace, 16(1), 33-41.
  39. Hyundai Motor Company IONIQ concept cabin exhibition. (2020). [Website]. Retrieved from https://www.youtube.com/watch?v=o3tANVnSuuM&t=74s
  40. Hyundai Motor Group's world's first active road noise reduction technology, RANC. (2020). [Website]. Retrieved from https://tech.hyundaimotorgroup.com/kr/article/hyundai-motors-worlds-first-road-noise-active-noise-control-ranc/
  41. Hyundai S-A1. (n.d.). [Website]. Retrieved from https://evtol.news/hyundai-s-a1/
  42. In-flight service. (n.d.). [Website]. Retrieved from https://www.emirates.com/kr/korean/experience/cabin-features/
  43. International Civil Aviation Organization. (2005). International Standard Annex 2 'Rules of the air' chapter 5, 5.1.2 minimum level. ICAO Retrieved from https://www.icao.int/Meetings/anconf12/Document%20Archive/an02_cons%5B1%5D.pdf
  44. International Civil Aviation Organization. (2015). International standard and recommended practices 'Environmental Protection' Annex16 vol.1 Aircraft Noise 3rd edition Attachment F. Guideline for noise certification of TILT-ROTOR Aircraft Retrieved from https://issuu.com/igli1975/docs/an16_v1_3ed
  45. ISO 2631-3. (1985). Evaluation of Human Exposure to Whole-body Vibration - Part 3: Evaluation of Exposure to Whole-body Z-axis Vertical Vibration in the Frequency Range 0.1 to 0.63Hz.
  46. ISO2631-1. (1997), Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration-Part 1 : General Requirements, ISO 2631-1.
  47. Jeong, K. H. (2018). Motion Sickness(멀미). n.p.: Korea Pharmaceutical Information Center.
  48. Jin, S. H. (2020). A Study on configuration of PAV for urban air mobility(도심형 항공 모빌리티를 위한 PAV 형상선정에 관한 연구) (Unpublished master's thesis). Konkuk University, Seoul, Republic of Korea. Retrieved from http://www.riss.kr/link?id=T15502594
  49. Jung, S. U., Gwak, D. I., Kim, S. H., & Hwang, Y. S. (2015). The Evaluation of human exposure to surion vibration(수리온 인체진동 영향성 평가). In Proceeding of Spring conference The Korean Society for Aeronautical & Space Sciences Abstract, (n.d), pp. 215-218. Retrieved from http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06591372
  50. Korea aerospace research institute(한국항공우주연구원). (n.d.). [Website]. Retrieved from https://www.kari.re.kr/kor/sub03_01_01.do#link 한국항공우주연구원-연구개발
  51. Korea Aerospace Research Institute. (2017). Joint planning research final report For OPPAV safe navigation system development and infrastructure construction(미래형 자율비행 개인항공기[OPPAV] 안전운항체계 개발 및 인프라 구축 공동기획연구 최종보고서) (Report No. TRKO201700017428). Daejeon: Korea Aerospace Research Institute. DOI: 10.23000/TRKO201700017428
  52. Kwon, J. Y., & Ju, D. Y. (2018). Interior design of fully autonomous vehicle for emotional experience: Focused on consumer's consciousness toward in-vehicle activity(감성적 경험을 위한 완전 자율주행 자동차 실내공간 디자인 방안: 실내행위에 대한 소비자 의식조사를 중심으로). Korean Society for Emotion and Sensibility, 21(1), 17-34. DOI: 10.14695/KJSOS.2018.21.1.17
  53. Kwon, J. Y., & Ju, D. Y. (2020). Seating arrangement of autonomous vehicle according to levels of driving automation and usage situation(자율주행 자동차 기술단계 및 사용 상황 별 시트 배치 유형). In Proceeding of Spring conference of Korea Society for Emotion and Sensibility, 2020, 27-28.
  54. Lee, J. W., Kwon, M. H., Kim, S. M., Lee, J. S., Kang, Y. K., Jung, J. S., Park, H. K., Jung, D. K., Yun, H. K., Lee, K. S., Jung, H. S., & Jung, W. H. (2018). A Study on the status and evaluation method of noise around the landing strip for the light aircraft(경비행장 주변 소음 실태 및 평가방법 연구), 11-1480523-003678-01, Indoor Environment and Noise Research Division, Environmental Infrastructure Research Department National Institute of Environmental Research. DOI: 10.23000/TRKO201900003808
  55. Lineberger, R., Hussain, A., Mehra, S., Pankratz, D. (2018). Elevating the future of mobility. n.p.: Deloitte Insights. Retrieved from https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/passenger-drones-flying-cars.html
  56. Los autos sin conductor podrian convertirse en las salas de estar del futuro. (2020). [Website]. Retrieved from https://tu18jax.com/blog/los-autos-sin-conductor-podrian-convertirse-en-las-salas-de-estar-del-futuro/
  57. M.VICS Futuristic Cockpit. (2021). [Website]. Retrieved from https://www.mobis.co.kr/communityid/9/view.do?pageIndex=1&idx=5087
  58. Ministry of Land, Infrastructure and Transport. (2020). A Korean-style urban air mobility[K-UAM] roadmap that opens the sky of the city(도시의 하늘을 여는 한국형 도심항공교통 로드맵). n.p.: Ministry of Land, Infrastructure and Transport.
  59. Mobility for Megacities: Audi AI:MEe. (2019). [Website]. Retrieved from https://www.audi-mediacenter.com/en/press-releases/mobility-for-megacities-audi-aime-11484
  60. Mobility foresights Aerospace. (2018). Flying car and Flying Taxi Market in US and Europe 2018-2025. INDIA: Mobility foresights.
  61. Moon, J. H. (2019). Effect of electromagnetic waves on the health of children and adolescents(전자기파가 소아청소년의 건강에 미치는 영향). Electromagnetic Fields and Neurodevelopmental Disorders. The 69th Spring Conference: The Korean Pediatric Society.
  62. Moore, M. D. (2003) "Personal Air Vehicles: A Rural/Regional and Intra-Urban On-Demand Transportation System," AIAA Paper 2003-2646. DOI: 10.2514/6.2003-2646
  63. Motion Sickness_Adedamola A. Ogunniyi. (2019). [Website]. Retrieved from https://www.msdmanuals.com/ko-kr/%ED%99%88/%EB%B6%80%EC%83%81-%EB%B0%8F-%EC%A4%91%EB%8F%85/%EB%A9%80%EB%AF%B8/%EB%A9%80%EB%AF%B8
  64. National noise information system(국가소음정보시스템). (n.d.). [Websie]. (Last accessed on 30, June 2021). Retrieved from http://www.noiseinfo.or.kr/inform/noise.do
  65. New technology to reduce motion sickness. (2021). [Website]. Retrieved from https://www.etoday.co.kr/news/view/2011222
  66. Open the Urban sky, Urban air mobility seoul demonstation symposium. (2020). [Wedsite]. Retrieved from https://www.youtube.com/watch?v=Tf4fM10CBDM. (Last accessed on 11, Nov 2020).
  67. Pal-V Liberty flying car is defined by what it isn't from 'ROAD SHOW'. (2018). [Website]. Retrieved from https://www.cnet.com/roadshow/pictures/pal-v-liberty-flying-car-geneva-gallery/
  68. Rash, C. E., Rucker, F., & Alabama. (2004). Awareness of causes and symtoms of flicker vertigo can limit ILL effects. (Report No. n.d. ) Flight Safety Foundation Human Factors & Aviation Medicine, 51(2).
  69. Reason, J. T., & Brand, J. J. (1975). Motion Sickness, London: Academic Press.
  70. Reinventing mobility with the car interior of the future. (n.d.). [Website]. Retrieved from https://solutions.covestro.com/en/highlights/articles/stories/2019/automotive-interior
  71. Renault EZ-GO concept: Le taxi du futur - En direct du salon de Geneve 2018. (2018). [Website]. Retrieved from https://www.caradisiac.com/renaultez-go-concept-le-taxi-du-futur-en-direct-du-salon-de-geneve-2018-166740.htm
  72. Roy, L. D. (1996). Fundamentals of aerospace medicine 2nd ed. Williams & Wilkins, Retrieved from https://books.google.co.kr/books/about/Fundamentals_of_Aerospace_Medicine.html?id=PmBsAAAAMAAJ&redir_esc=y
  73. Ryi, J. H., & Choi, J. S. (2020). A study on noise certification Evaluation of hybrid Vtol Uav by wind tunnel test and flight test. Jouranl of Aerospace System Engineering, 14(spc), 39-48. DOI: 10.20910/JASE.2020.14.S.39
  74. Ryi, J. H., Rhee, W., & Choi, J. S. (2007). Noise level estimation procedure for a tilt-rotor aircraft based on ICAO noise certification regulation(ICAO 소음 인증기준에 따른 틸트로터 항공기의 소음 레벨 예측법에 관한 연구). Abstracts of the Korean Society for Aeronautical and Space Sciences Academic Conference, 351-356.
  75. Samjong KPMG Economic Research Institute. (2019). Mobility revolution in the sky, urban air mobility(하늘 위에 펼쳐지는 모빌리티 혁명, 도심 항공 모빌리티). (Report No. n.d.) Seoul: Samjong KPMG.
  76. Seats move, autonomous car seat(시트가 움직인다, 자율주행 카 시트). (n.d.). [Website]. Retrieved from https://www.hyundai.co.kr/TechInnovation/Autonomous/Dymos.hub#none
  77. Seo, J. S., Chung, J. M., Jeong, H. L., Park, S. Y., Ryoo, H. W., Lee, K. W., Kim, Y. J., Park, N. H., Lee, J. S., Seo, K. S., Park, J. B., & Lee, H. J. (2004). A clinical review of acute mountain sickness(급성 고산병의 임상적 고찰). Journal of the Korean Society of Emergency Medicine, 15(6), 512-522.
  78. Silentium Silence in a chip. (2020). [Website]. Retrieved from https://www.silentium.com/silentium-ramps-up-global-rollout-of-its-active-road-noise-cancellation-technology/
  79. Silva, C., Johnson, W. R., Solis, E., Patterson, M. D., & Antcliff, K. R. (2018). VTOL urban air mobility concept vehicles for technology development. 2018 Aviation Technology, Integration, and Operations Conference, pp. 3847
  80. Neitzel, Fligor. (2015). Make Listening Safe (pp. 6). Switzerland: World Health Organization. DOI: 10.2514/6.2018-3847
  81. Sohn, Y. W., & Lee, K. S. (2009). Adaptive expertise in pilot situation awareness: Comparison of expert and novice instrument flight performance (조종사 상황인식의 적응적 전문성: 전문가와 초보자의 계기비행 수행 비교). pp. 55-64.
  82. Song, J. D. (2021). Development status and economic efficiency of PAV (PAV의 개발현황과 경제적 효율성 비교). Journal of the Korean Society for Aviation and Aeronautics, 29(1), 61-73. DOI: 10.12985/ksaa.2021.29.1.061
  83. STYLEPARK X MINI A dream of space. (2020). [Website]. Retrieved from https://www.stylepark.com/en/news/mini-vision-urban-car-design-vehicle
  84. Ten Modern Flying Cars in Real Life (2021). [Website]. Retrieved from https://www.beautifullife.info/automotive-design/10-real-flying-cars/
  85. Terrafugia Transition aircraft first hands-on from engadget. (2012). [Website]. Retrieved from https://www.engadget.com/2012-04-04-terrafugia-transition-aircraft-first-hands-on-video.html?guccounter=1
  86. The first electric vertical take-off and landing jet (n.d.). [Website]. Retrieved from https://lilium.com/jet
  87. The Future of Car Mobility Driven by Design (n.d.). [Website]. Retrieved from https://panasonic.net/design/works/car-future/
  88. The technologies on the road to full autonomy. (n.d.). [Website]. Retrieved from https://na.panasonic.com/us/automotive-solutions/autonomous-0
  89. Toscano, W. B. (2020). Motion Sickness and Concerns for Urban Air Mobility Vehicles: A Literature Review - NASA Ames Research Center.
  90. UAM Dream mobility technology unfolding in the sky. (n.d.). [Website]. Retrieved from https://tech.hyundaimotorgroup.com/kr/mobility-device/uam/
  91. UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4 Version 1.0. NASA and Deloitte team. (2020) Retrieved from https://aam-cms.marqui.tech/uploads/aam-portal-cms/originals/4db079ec-555e-402c-b80f-9b768f72bbff.pdf
  92. Uber Elevate White Paper. (2016). Fast-Forwarding to a Future of On-Demand Urban Air Transportation: UBER Elevate Retrieved from https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf
  93. Urban air mobility could help commuters get above it all, but many questions remain. (2019). [Website]. Retrieved from https://issuu.com/auvsi3/docs/web-june/s/106713
  94. Urban Air Mobility. (n.d.). [Website]. Retrieved from https://www.hanwhasystems.com/kr/business/newbiz/uam.do
  95. User-centric and production-ready solutions for the next generation of vehicles. (2020). [Website]. Retrieved from https://www.yfai.com/en/yanfeng-unveils-its-xim21-interior-concept-europe
  96. Vahana is an all-electric, single-seat, tilt-wing vehicle demonstrator that focused on advancing self-piloted, electric vertical take-off and landing (eVTOL) flight. (n.d.). [Website]. Retrieved from https://www.airbus.com/innovation/zero-emission/urban-air-mobility/vahana.html
  97. Vertical Aerospace VA-X4. (n.d.). [Website]. Retrieved from https://evtol.news/vertical-aerospace-VA-1X
  98. Volvo 360c autonomous concept envisions the future of first class travel CONCEPT CARS. (2018). [Website]. Retrieved from https://www.carbodydesign.com/2018/09/volvo-360c-autonomous-concept/
  99. Warwick-Evans, L. A., Symons, N., Fitch, T., & Burrows, L. (1998). Evaluating sensory conflict and postural instability. theories of motion sickness. Brain Research Bulletin, 47(5), 465-469. DOI: 10.1016/ s0361-9230(98)00090-2
  100. We Are Overair. (n.d.) [Website]. Retrieved from https://www.overair.com/
  101. Welcome to the world of tomorrow. (2018). [Website]. Retrieved from https://www.techspot.com/news/73603-audi-joins-airbus-italdesign-flying-car-project.html
  102. Who is CANOO, who divided the development of the next generation EV of Hyundai-Kia Motors with the British Airval?(영국 어라이벌과 현대기아차 차세대 EV 개발 양분한 CANOO는 누구?). (2020). [Website]. Retrieved from https://www.autodaily.co.kr/news/articleView.html?idxno=416432
  103. XTI Aircraft. (n.d.). [Website]. Retrieved from https://www.xtiaircraft.com/cm/gallery
  104. Yanfeng unveils its XiM21 interior concept in Europe User-centric and production-ready solutions for the next generation of vehicles [Website]. (2020). Retrieved from https://www.yfai.com/en/yanfeng-unveils-its-xim21-interior-concept-europe
  105. YANG, J. H. (2019). PAV technology market trend and industrial environment analysis report(개인용항공기 기술시장 동향 및 산업환경 분석 보고서). (Report No. n.d.) Daejeon: AEROSPACE ISSUE. KARI.
  106. YHD wallpaper: Ehang 184, best drones, aerial vehicle, interior, review. (n.d.). [Website]. Retrieved from https://www.wallpaperflare.com/ehang-184-best-drones-aerial-vehicle-interior-review-wallpaper-qprhc
  107. Yun, J. Y. & Hwang, H. Y. (2020). Requirement analysis of efficiency, reliability, safety, noise, emission, performance and certification necessary for the application of urban air mobility (UAM) (도심항공 모빌리티 적용에 필요한 효율,신회성,안전성,소음,배기가스,성능 및 인증의 요구도 분석). Journal of Advanced Navigation Technology, 24(5), 329-342. DOI: 10.12673/JANT.2020.24.5.329