• Title/Summary/Keyword: Perovskites

Search Result 99, Processing Time 0.025 seconds

Impact of CuSCN Deposition Solvents on Highly Efficient Perovskite Solar Cells (고효율 페로브스카이트 태양전지에서의 무기 홀 전도체 CuSCN 용매 효과)

  • Jung, Minsu;Seok, Sang Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • Inorganic-organic hybrid perovskite solar cells have demonstrated a significant achievement by reaching a certified power conversion efficiency of 25.2% in 2019 as compared to that of 3.8% in 2009. However, organic hole conductors such as PTAA and spiro-OMeTAD are known to be expensive and unstable when they are exposed to operational conditions. In this study, the inorganic hole conductor CuSCN was used to overcome such concerns. The influence of dipropyl sulfide (DPS) and diethyl sulfide (DES) as CuSCN deposition solvents on the underlying perovskite active layer was investigated. DES solvent was observed to be advantageous in terms of CuSCN solubility and mild for the perovskite layer, thereby resulting in a power conversion efficiency of 16.9%.

Optical Characterization of Cubic and Pseudo-cubic Phase Perovskite Single Crystals Depending on Laser Irradiation Time

  • Byun, Hye Ryung;Jeong, Mun Seok
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.42-45
    • /
    • 2018
  • Photovoltaic and optoelectronic devices based on hybrid metal halide perovskites ($MAPbX_3$; $MA=CH_3NH_3{^+}$, $X=Cl^-$, $Br^-$, or $I^-$) are rapidly improving in power conversion efficiency. Also, during recent years, perovskite single crystals have emerged as promising materials for high-efficiency photovoltaic and optoelectronic devices because of their low defect density. Here we show that the light soaking effect of mixed halide perovskite ($MAPbBr_{3-x}I_x$) single crystals can be explained using photoluminescence, time-resolved photoluminescence, and Raman scattering measurements. Unlike Br-based single crystal, Br/I mixed single crystal show a strong light soaking effect under laser irradiation condition that was related to the existence of multiple phases.

First Principles Study of Mixed Inorganic-Organic Perovskites (HC(NH2)2PbI3-CH3NH3PbBr3) for Photovoltaic Applications

  • Noh, Min Jong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.378-381
    • /
    • 2015
  • To produce low cost and efficient photovoltaic cells, inorganic-organic lead halide perovskite materials appear promising for most suitable solar cells owing to their high power conversion efficiency. Most recent research showes that formamidinium lead iodide ($FAPbI_3$) with methylammonium lead bromide ($MAPbBr_3$) improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination because incorporated $MAPbBr_3$ makes $FAPbI_3$-relatively unstable but comparatively narrow band gap-more stable composition. In respect to first principle study, we investigated band gap of $MAPbI_3$, $FAPbI_3$, $MAPbBr_3$, $(FAPbI_3)_{0.89}-(MAPbBr_3)_{0.11}$ and 0.615(eV), 0.466, 1.197, 0.518 respectively through EDISON DFT software. These results emphasize enhancing structure stability is important factor as well as finding narrow band gap.

  • PDF

Ion Migration in Organic Metal Halide Perovskites (유기 금속 할라이드 페로브스카이트에서 이온 이동)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • In this review, recent researches on ion transport phenomena in organic metal halide perovskite materials, which have been popular all over the world, are summarized. Although different results have been reported depending on the perovskite material composition and applied voltage, iodide seems to migrate under actual solar cell operating conditions, and occasionally methylammonium migration is observed. Perovskite is a so-called mixed conductor in which electrons and ions move simultaneously at room temperature, which greatly influences the hysteresis of the perovskite solar cell current-voltage curve and the performance degradation due to long-term operation.

Characterization of Ln0.8Sr0.2CoO3-δ (Ln=Gd, Nd, Pr, Sm, or Yb) as Cathode Materials for Low-Temperature SOFCs

  • Choi, Jung-Woon;Kang, Ju-Hyun;Kim, Han-Ji;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.758-763
    • /
    • 2006
  • Perovskites with nominal compositions $Ln_{0.8}Sr_{0.2}CoO_{3-\delta}$ (Ln=Gd, Nd, Pr, Sm, or Yb) were fabricated as cathode materials using a solid-state reaction method for low-temperature operating Solid-Oxide Fuel Cells (SOFCs). X-ray diffraction analysis and microstructure observation for the sintered samples were performed. The ac complex impedance was measured in the temperature range of $600-900^{\circ}C$ in air and fitted with a Solartron ZView program. The crystal structure, microstructure, electrical conductivity, and polarization resistance of $Ln_{0.8}Sr_{0.2}CoO_{3-\delta}$ were characterized systematically.

On the Chemical Diffusion Coefficient of H2O in AB1-xBxO(3-x/2)-type Perobskites

  • Baek, Hyun-Deok;Virkar, Anil V.
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.827-831
    • /
    • 2003
  • In proton-conducting perovskites, oxygen ions and protons make a diffusion pair for a chemical diffusion and thus lead to the transport of $H_2O$ under its chemical potential gradient. The present manuscript develops relationships between the chemical diffusion coefficient of $H_2O$ and the diffusion coefficients of protons and oxygen vacancies with an emphasis on the thermodynamic behavior of the oxygen vacancies. Depending on the degree of hydration X, two different expressions of the chemical diffusion coefficient were obtained : equation omitted and equation omitted.

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)

  • Ishihara, Tatsumi
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.469-477
    • /
    • 2016
  • The application of nanomaterials for electrodes of intermediate temperature solid oxide fuel cells (SOFC) is introduced. In conventional SOFCs, the operating temperature is higher than 1073 K, and so application of nanomaterials is not suitable because of the high degradation rate that results from sintering, aggregation, or reactions. However, by allowing a decrease of the operating temperature, nanomaterials are attracting much interest. In this review, nanocomposite films with columnar morphology, called double columnar or vertically aligned nanocomposites and prepared by pulsed laser ablation method, are introduced. For anodes, metal nano particles prepared by exsolution from perovskite lattice are also applied. By using dissolution and exsolution into and from the perovskite matrix, performed by changing $P_{O2}$ in the gas phase at each interval, recovery of the power density can be achieved by keeping the metal particle size small. Therefore, it is expected that the application of nanomaterials will become more popular in future SOFC development.

Inorganic charge transport materials for high reliable perovskite solar cells (고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층)

  • Park, So Jeong;Ji, Su Geun;Kim, Jin Young
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.

Hydrogen Production by Photoelectrochemical Water Splitting

  • Seo, H.W.;Kim, J. S.
    • Applied Science and Convergence Technology
    • /
    • v.27 no.4
    • /
    • pp.61-64
    • /
    • 2018
  • The basic principle and concept for hydrogen production via water-splitting process are introduced. In particular, recent research activities and their progress in the photoelectrochemical water-splitting process are investigated. The material perspectives of semiconducting photocatalysts are considered from metal oxides, including titanium oxides, to carbon compounds and perovskites. Various structural configurations, from conventional photoanodes with metal cathodes to tandem and nanostructures, are also studied. The pros and cons of each are described in terms of light absorption, charge separation/photoexcited electron-hole pair recombinations and further solar-to-hydrogen efficiency. In this research, we attempt to provide a broad view of up-to-date research and development as well as, possibly, future directions in the photoelectrochemical water-splitting field.

Polymer Passivation Effect on Methylammonium Lead Halide Perovskite Photodetectors

  • Kim, Hyojung;Byun, Hye Ryung;Kim, Bora;Kim, Sung Hyuk;Oh, Hye Min;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1675-1678
    • /
    • 2018
  • Methylammonium lead halide ($MAPbI_3$) perovskites are considered as promising materials owing to their excellent optical and electrical properties. However, perovskite materials suffer from degradation in air, which limits their practical applications. Here, we demonstrate successful passivation of the $MAPbI_3$ photodetectors through monochloro-para-xylylene (Parylene-C) deposition. The time-dependent photocurrent characteristics were systematically investigated, and we achieved significantly improved device performance and stability with Parylene-C passivation. Based on the excitation-power-dependent photoluminescence (PL) data, we confirmed that Parylene-C can reduce the carrier losses in $MAPbI_3$, leading to the enhancement of photocurrent and PL in $MAPbI_3$ photodetectors.