Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.2.118

Impact of CuSCN Deposition Solvents on Highly Efficient Perovskite Solar Cells  

Jung, Minsu (School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Seok, Sang Il (School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.2, 2020 , pp. 118-122 More about this Journal
Abstract
Inorganic-organic hybrid perovskite solar cells have demonstrated a significant achievement by reaching a certified power conversion efficiency of 25.2% in 2019 as compared to that of 3.8% in 2009. However, organic hole conductors such as PTAA and spiro-OMeTAD are known to be expensive and unstable when they are exposed to operational conditions. In this study, the inorganic hole conductor CuSCN was used to overcome such concerns. The influence of dipropyl sulfide (DPS) and diethyl sulfide (DES) as CuSCN deposition solvents on the underlying perovskite active layer was investigated. DES solvent was observed to be advantageous in terms of CuSCN solubility and mild for the perovskite layer, thereby resulting in a power conversion efficiency of 16.9%.
Keywords
Solar cells; Perovskites; Inorganic hole conductor; CuSCN; Solvent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]   DOI
2 NERL, Best Research-cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.htmlonference (2019).
3 Y. Yue, N. T. Salim, Y. Wu, X. Yang, A. Islam, W. Chen, J. Liu, E. Bi, F. Xie, M. Cai, and L. Han, Adv. Mater., 28, 10738 (2016). [DOI: https://doi.org/10.1002/adma.201602822]   DOI
4 J. A. Christians, R.C.M. Fung, and P. V. Kamat, J. Am. Chem. Soc., 136, 758 (2014). [DOI: https://doi.org/10.1021/ja411014k]   DOI
5 G. A. Sepalage, S. Meyer, A. Pascoe, A. D. Scully, F. Huang, U. Bach, Y. B. Cheng, and L. Spiccia, Adv. Funct. Mater., 25, 5650 (2015). [DOI: https://doi.org/10.1002/adfm.201502541]   DOI
6 P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Gratzel, Nat. Commun., 5, 3834 (2014). [DOI: https://doi.org/10.1038/ncomms4834]   DOI
7 J. W. Jung, C. C. Chueh, and A.K.Y. Jen, Adv. Energy Mater., 5, 1500486 (2015). [DOI: https://doi.org/10.1002/aenm.201500486]   DOI
8 M. Jung, Y. C. Kim, N. J. Jeon, W. S. Yang, J. Seo, J. H. Noh, and S. I. Seok, Chem. Sus. Chem., 9, 2592 (2016). [DOI: https://doi.org/10.1002/cssc.201600957]   DOI
9 I. S. Yang, M. R. Sohn, S. D. Sung, Y. J. Kim, Y. J. Yoo, J. Kim, and W. I. Lee, Nano Energy, 32, 414 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2016.12.059]   DOI
10 J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger, and A.K.Y. Jen, Adv. Mater., 27, 695 (2015). [DOI: https://doi.org/10.1002/adma.201404189]   DOI
11 N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, and M. Gratzel, Science, 358, 768 (2017). [DOI: https://doi.org/10.1126/science.aam5655]   DOI
12 G. A. Sepalage, S. Meyer, A. R. Pascoe, A. D. Scully, U. Bach, Y. B. Cheng, and L. Spiccia, Nano Energy, 32, 310 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2016.12.043]   DOI