• 제목/요약/키워드: Perovskite-type electrolyte

검색결과 12건 처리시간 0.025초

Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가 (Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated)

  • 오미영;;신태호
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

In-situ spectroscopic studies of SOFC cathode materials

  • 주종훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • 한국세라믹학회지
    • /
    • 제56권2호
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

NiO가 도핑된 BaZr0.85Y0.15O3-δ의 소결거동 및 전도도에 관한 연구 (A Study on Sintering Behavior and Conductivity for NiO-doped BaZr0.85Y0.15O3-δ)

  • 박영수;김진호;김혜경;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.670-677
    • /
    • 2012
  • Perovskite-type oxides such as doped barium zirconate ($BaZrO_3$) show high proton conductivity and chemical stability when they are exposed to hydrogen and water vapour containing atmospheres, thus it can be applicable to the hydrogen separation and the fuel cell electrolyte membranes. However the high temperature ($1700-1800^{\circ}C$) and long sintering times (24h) are generally required to prepare the fully densified $BaZrO_3$ pellets. These sintering conditions lead to the limitation of the grain size growth and the degradation of conductivity due to the acceleration of BaO evaporation at $1200^{\circ}C$. Here we demonstrate NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ with lower calcination and sintering temperature, less experimental procedure and lower process cost than the conventional mixing method. The stoichiometry of $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was optimized by the control of excess amount of Ba (5mol%) to minimized BaO evaporation. We found that the crystal size of NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was increased with increase of calcination temperature from XRD analysis. NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ powder was calcined at $1000^{\circ}C$ for 12h when its showed the highest conductivity of $3.3{\times}10^{-2}s/cm$.

La0.8Sr0.2Ga0.8Mg0.2-xZnxO2.8(X=0.0~0.05) 전해질의 저온 소결 특성 (Properties of Low Temperature Sintering of La0.8Sr0.2Ga0.8Mg0.2-xZnxO2.8 (X = 0.0 - 0.05) Electrolyte)

  • 임경태;이충환;유지행;백동현;백경호
    • 한국세라믹학회지
    • /
    • 제51권3호
    • /
    • pp.208-217
    • /
    • 2014
  • $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2-x}Zn_xO_{2.8}$(LSGMZ, X=0-0.05) was prepared using a solid state reaction method. Two secondary phases ($LaSrGaO_4$ and $LaSrGa_3O_7$) of powders were identified by X-ray diffraction analysis. The relative amount of these secondary phases depended on the calcination conditions (temperature and time) and Zn content. The sintering density of LSGMZ was enhanced by increasing the Zn content and calcination temperature at the low sintering temperatures ($1250-1300^{\circ}C$). The relationship between the sintering density of LSGMZ and the synthesis conditions was discussed considering the phase analysis results.

Variation of Oxygen Nonstoichiometry of Porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$ SOFC-Cathode under Polarization

  • Mizusaki, Junichiro;Harita, Hideki;Mori, Naoya;Dokiya, Masayuki;Tagawa, Hiroaki
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.177-182
    • /
    • 2000
  • At the porous $La_{0.6}Ca_{0.4}MnO_{3-{\delta}}$(LCM)/YSZ electrodes of solid oxide fuel cells (SOFC), the electrochemical redox reaction of oxygen proceeds via the triple boundary (TPB) of gas/LCM/YSZ. The surface diffusion of adsorbed oxygen on LCM has been proposed as the rate determining process, assuming the gradient of oxygen chemical potential from the outer surface of porous layer to TPB. Along with the formation of this gradient, oxygen nonstoichiometry in the bulk of LCM may varies. In this paper, an electrochemical technique was described precisely to determine the variation of oxygen content in LCM of porous LCM/YSZ under polarization. It was shown that the oxygen potential in LCM layer under large cathodic polarization is much lower than that in the gas phase, being determined from the electrode potential and Nernst equation.

  • PDF

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

전기화학환원에 의한 이산화탄소의 수소화 반응연구 (A study on the electrochemical reduction of carbon dioxide)

  • 심규성;김종원;김연순;명광식
    • 한국수소및신에너지학회논문집
    • /
    • 제9권1호
    • /
    • pp.8-15
    • /
    • 1998
  • 지구온난화방지를 위한 이산화탄소 고정화 기술로는 주로 접촉수소화에 의한 탄화수소의 제조가 주로 연구, 검토되고 있으나 값비싼 수소의 확보가 큰 걸림돌로 작용하고 있으며, 기타 해조류 합성 등에 의한 생물학적 고정화 방법도 연구되고 있다. 전기화학적 환원에 의한 이산화탄소 고정화 방법은 전해질 용액중 촉매전극으로 전기화학반응을 일으켜 이산화탄소를 메탄, 에탄, 알코올 등으로 전환시키는 것으로 접촉수소화 방법과 같은 원리로 생각할 수 있으나 전기분해와 동시에 수소화 반응을 일으키므로 장치가 간단하고 심야의 잉여전력을 이용할 수 있는 동의 장점으로 최근 연구개발이 이루어지고 있다. 본 연구에서는 환원전극으로 구리 및 페롭스카이트($La_{0.8}Sr_{0.2}CuO_3$) 분말을 시료로 하여 제조한 전극을 사용하였고, 기준전극으로는 Ag/AgCl, 상대전극으로는 백금전극을 사용하였다. 전해액은 $KHCO_3$ 수용액에 이산화탄소를 포화시키고 이를 반응조에 순환시키는 연속흐름식 전해환원시스템을 사용하였다. 환원전극의 크기는 $2{\times}2cm$, 상대전극의 크기는 $2{\times}6cm$의 것을 사용하였고, 전해환원 결과 얻어지는 기상의 생성물과 액상의 생성물을 분석하였다. 또한 전해질의 농도, 페롭스카이트 전극의 제조방법에 따라 환원전류의 크기 및 반응생성물의 종류와 발생량을 측정하였다.

  • PDF

(La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia 복합체 전극을 이용한 고온 수증기 전기분해 연구 (A Study on the High Temperature Steam Electrolysis Using (La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia Composite Electrodes)

  • 지종섭;김창희;강용;심규성
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.627-631
    • /
    • 2005
  • 고온수증기 전기분해의 양극물질로 이용될 수 있는 $(La_{0.8}Sr_{0.2})_{0.95}MnO_3$/yttria-stabilized zirconia(LSM/YSZ) 복합체 전극을 x-ray diffractometry, scanning electron microscopy 그리고 galvanodynamic, galvanostatic polarization method로 연구하였다. 이런 목적으로 perovskite-type의 LSM 물질은 공침법을 이용하여 제조하였으며, 8 mol% YSZ와 몰분율을 달리하여 복합체 전극을 합성하였다. LSM/YSZ 복합체 전극은 평판의 YSZ 전해질에 LSM/YSZ 복합체를 스크린 프린팅 후 $1,100^{\circ}C$에서 열처리 코팅하여 제조하였다. 실험결과로부터 LSM/YSZ 복합체 전극의 전기화학적 특성은 전극을 이루는 삼상계면의 구조와 전기분해 온도에 영향을 받는다는 것을 확인하였다.