DOI QR코드

DOI QR Code

A Study on Sintering Behavior and Conductivity for NiO-doped BaZr0.85Y0.15O3-δ

NiO가 도핑된 BaZr0.85Y0.15O3-δ의 소결거동 및 전도도에 관한 연구

  • Park, Young-Soo (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hae-Kyoung (School of Materials Science & Engineering, Yeungnam University) ;
  • Hwang, Kwang-Tak (Korea Institute of Ceramic Engineering and Technology)
  • 박영수 (한국세라믹기술원 이천분원 도자세라믹센터) ;
  • 김진호 (한국세라믹기술원 이천분원 도자세라믹센터) ;
  • 김혜경 (영남대학교 신소재공학부) ;
  • 황광택 (한국세라믹기술원 이천분원 도자세라믹센터)
  • Received : 2012.09.28
  • Accepted : 2012.12.31
  • Published : 2012.12.31

Abstract

Perovskite-type oxides such as doped barium zirconate ($BaZrO_3$) show high proton conductivity and chemical stability when they are exposed to hydrogen and water vapour containing atmospheres, thus it can be applicable to the hydrogen separation and the fuel cell electrolyte membranes. However the high temperature ($1700-1800^{\circ}C$) and long sintering times (24h) are generally required to prepare the fully densified $BaZrO_3$ pellets. These sintering conditions lead to the limitation of the grain size growth and the degradation of conductivity due to the acceleration of BaO evaporation at $1200^{\circ}C$. Here we demonstrate NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ with lower calcination and sintering temperature, less experimental procedure and lower process cost than the conventional mixing method. The stoichiometry of $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was optimized by the control of excess amount of Ba (5mol%) to minimized BaO evaporation. We found that the crystal size of NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was increased with increase of calcination temperature from XRD analysis. NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ powder was calcined at $1000^{\circ}C$ for 12h when its showed the highest conductivity of $3.3{\times}10^{-2}s/cm$.

Keywords

References

  1. M. S. Byeon, E. T. Kang, W. S. Cho, J. H. Kim, K. T. Hwang, "Chemical instability of BeCeO3-Based proton conducting oxide", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 1, 2011, pp. 83-91.
  2. Z. Zhong, "Stability and conductivity study of the $BaCe_{0.9}-xZrxY_{0.1}O_{2.95}systems$", Solid State Ionics. Vol. 178, 2007, pp. 213-220. https://doi.org/10.1016/j.ssi.2006.12.007
  3. K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, "protonic conduction in Zr-substituted BaCeO3", Solid State Ionics, Vol. 138, No. 1-2, 2000, pp. 91-98. https://doi.org/10.1016/S0167-2738(00)00777-3
  4. H. Matsumoto, H. Hayashi, T. Shimura, H. Iwahara, T. Yogo, "Electrochemical hydrogen isotope sensing via the high-temperature proton conductor $CaZr_{0.90}In_{0.10}O_{3-alpha}$", Solid State Ionics, Vol. 161, No. 1-2, 2003, pp. 93-103. https://doi.org/10.1016/S0167-2738(03)00212-1
  5. H. Matsumoto, Y. Iida, H. Iwahara, "Current efficiency of electrochemical hydrogen pumping using a high-temperature proton conductor $SrCe_{0.95}Yb_{0.05}O_3-alpha$", Solid State Ionics, Vol. 127, No. 3-4, 2000, pp. 345-349. https://doi.org/10.1016/S0167-2738(99)00294-5
  6. C. Zhang, H. Zhao, "Electrical conduction behavior of Sr substituted proton conductor Ba1-xSrx $Ce_{0.9}Nd_{0.1}O_3-{\delta}$.", Solid State Ionics, Vol. 181, No. 33-34, 2002, pp. 1478-1485.
  7. H.G. Bohn, and T. Schober, "Electrical Conductivity of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$", J. Am. Ceram. Soc, Vol .83, No. 4, 2000, pp. 768-772.
  8. T. Schober and H. G. Bohn, "Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$", Solid State Ionics, Vol. 127, No. 3-4, 2000, pp. 351-60. https://doi.org/10.1016/S0167-2738(99)00283-0
  9. A. M. Azad, S. Subramaniam, and T. W. Dung, "On the Development of High Density Barium $Metazirconate(BaZrO_3)$ Ceramics", J.Alloy. Compd. Soc, Vol. 334, No. 1-2, 2002, pp. 118-30. https://doi.org/10.1016/S0925-8388(01)01785-6
  10. Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, "High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate", Chem. Mater, Vol. 21, 2009, pp. 2755. https://doi.org/10.1021/cm900208w
  11. Frans M.M. Snijkers, Anita Buekenhoudt, Jos Cooymans, Jan J. Luyten, "Proton conductivity and phase composition in $BaZr_{0.9}Y_{0.1}O_3−{\delta}$", Scripta Materialia, Vol. 50, 2004, pp. 655-659. https://doi.org/10.1016/j.scriptamat.2003.11.028
  12. S. Barison, M. Battagliarin, T. Cavallin, S. Daolio, L. Doubova,M. Fabrizio, C.Mortalò, S. Boldrini, and R.Gerbasi, "Barium NonStoichiometry Role on the Properties of $Ba_{1+x}Ce_{0.65}Zr_{0.20}Y_{0.15}O_3-{\delta}$ Proton Conductors for IT-SOFCs", FUEL CELLS, Vol. 8, No. 5, 2008, pp. 360-368. https://doi.org/10.1002/fuce.200800021
  13. F.M.M. Snijkers, A. Buekenhoudt, J. Cooymans, J.J. Luyten, "Proton conductivity and phase composition in $BaZr_{0.9}Y_{0.1}O_3-{\delta}$", Scripta Materialia, Vol. 50, 2004, pp. 655-659. https://doi.org/10.1016/j.scriptamat.2003.11.028
  14. P. Babilo and S.M. Hailew, "Enhanced Sintering of Yttrium doped Barium Zirconate by Addition of ZnO", J. Am. Ceram. Soc., Vol. 88, No. 9, 2005, pp. 2362-2368. https://doi.org/10.1111/j.1551-2916.2005.00449.x
  15. S. Tao and J.T.S. Irvine, "A stable, easily sintered proton-conducting oxide electrolyte for moderatetemperature fuel cells and electrolyzers", Adv. Mater, Vol. 18, 2006, pp. 1581-1584. https://doi.org/10.1002/adma.200502098
  16. S. Tao, J.T.S. Irvine, "Conductivity studies of dense yttrium-doped $BaZrO_3$ sintered at ${1325^{\circ}C}$", Journal of Solid State Chemistry, Vol. 180, No. 12, 2007, pp. 3493-3503. https://doi.org/10.1016/j.jssc.2007.09.027
  17. Z. Peng, R. Guo, Z. Yin, and J. Li, "Influences of ZnO on the Properties of $SrZr_{0.9}Y_{0.1}O_{2.95}$ Protonic Conductor", The American Ceramic Society, Vol. 91, No. 5, 2008, pp. 1534-1538. https://doi.org/10.1111/j.1551-2916.2007.02222.x
  18. J. Tong, D. Clark, M. Hoban, R. O'Hayre, "Costeffective solid-state reactive sintering method for high conductivity proton conducting yttriumdoped barium zirconium ceramics", Solid State Ionics, Vol. 181, 2010, pp. 496-503. https://doi.org/10.1016/j.ssi.2010.02.008
  19. E. Fabbri, L. Bi, H. Tanaka, D. Pergolesi, E. Traversa, "Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells", Adv. Funct. Mater, Vol. 21, No. 1, 2011, pp. 158-166. https://doi.org/10.1002/adfm.201001540
  20. D.Y. Gao, R.S. Guo, "Densification and properties of barium zirconate ceramics by addition of $P_2O_5$", Materials Letters, Vol. 64, 2010, pp. 573-575. https://doi.org/10.1016/j.matlet.2009.12.003
  21. J.S. Do, Y.T. Chen, and M.H. Lee, "Effect of thermal annealing on the properties of COrichcore-Pt-rich shell/C oxygen reduction electrocatalyst", J. Power Sources, Vol. 172, No. 2, 2007, pp. 623-632. https://doi.org/10.1016/j.jpowsour.2007.05.020
  22. K. S. Kim, M. K. Kim, D. K. Noh, Y. S. Tak and S. H. Baeck, "Synthesis of Pt-Bi/Carbon electrodes by reduction method for direct methanol fuel cell", Appl. Chem. Eng., Vol. 22, 2011, pp. 479-485.
  23. R.D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallogr. Vol. 32, 1976, p. 751. https://doi.org/10.1107/S0567739476001551
  24. S. Imashuku, T. Uda, Y. Nose, K. Kishida, S. Harada, H. Inui, and Y. Awakura, "Improvement of Grain-Boundary Conductivity of Trivalent Cation-Doped Barium Zirconate Sintered at ${1600^{\circ}C}$ by Co-doping Scandium and Yttrium", Journal of The Electrochemical Society, Vol. 155, 2008, pp. 581-586. https://doi.org/10.1149/1.2901903