Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.3.212

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ  

Al, S. (Department of Chemical Engineering and Advanced Materials, Newcastle University)
Zhang, G. (Department of Chemical Engineering and Advanced Materials, Newcastle University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.3, 2018 , pp. 212-219 More about this Journal
Abstract
Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.
Keywords
BCY20; Water permeation; Perovskites; Fuel cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ding, Y., Y. Li and W. Huang, Mater. Res. Bull., 2017, 95(Supplement C), 328-333.   DOI
2 Wen, Y., S. Yang, S. Gu, X. Ye and Z. Wen, Solid State Ionics, 2017, 308, 167-172.   DOI
3 Bonanos, N., K.S. Knight and B. Ellis, Solid State Ionics, 1995, 79(0), 161-170.   DOI
4 Iwahara, H., T. Esaka, H. Uchida and N. Maeda, Solid State Ionics, 1981, 3-4(0), 359-363.   DOI
5 Kreuer, K.D., Annu. Rev. Mater. Res., 2003, 33(1), 333-359.   DOI
6 Kreuer, K.D., T. Dippel, Y.M. Baikov and J. Maier, Solid State Ionics, 1996, 86-88, Part 1(0), 613-620.   DOI
7 Kreuer, K.D., E. Schonherr and J. Maier, Solid State Ionics, 1994, 70-71, Part 1(0), 278-284.   DOI
8 Grimaud, A., J.M. Bassat, F. Mauvy, P. Simon, A. Canizares, B. Rousseau, M. Marrony, and J.C. Grenier, Solid State Ionics, 2011, 191(1), 24-31.   DOI
9 Ricote, S., N. Bonanos and G. Caboche, Solid State Ionics, 2009, 180(14-16), 990-997.   DOI
10 Animitsa, I., A. Neiman, N. Kochetova, D. Korona and A. Sharafutdinov, Solid State Ionics, 2006, 177(26), 2363-2368.   DOI
11 Hancke, R., Z. Li and R. Haugsrud, J. Electrochem. Soc., 2013, 160(8), F757-F763.   DOI
12 W. Grover, C., Solid State Ionics, 2007, 178(7-10), 481-485.   DOI
13 Oishi, M., S. Akoshima, K. Yashiro, K. Sato, J. Mizusaki, and T. Kawada, Solid State Ionics, 2008, 179(39), 2240-2247.   DOI
14 Sanders, M. and R. O'Hayre, J. Mater. Chem., 2010, 20(30), 6271-6281.   DOI
15 W. Grover Coors and R. Swartzlander, Proceedings of the 26th Riso Int. Sympos. Mater. Sci. Solid State Electrochem., 2005, (September), 185-196.
16 Coors, W.G., J. Power Sources, 2003, 118(1-2), 150-156.   DOI
17 Norby, T., Solid State Ionics, 1999, 125(1-4), 1-11.   DOI
18 Subramaniyan, A., J. Tong, R.P. O'Hayre and N.M. Sammes, J. Am. Ceram. Soc., 2011, 94(6), 1800-1804.   DOI
19 Al, S., Investigation and evaluation of water permeation through $BaCe_{0. 8}Y_{0. 2}O_{3-d}$ electrolyte for solid oxide fuel cells. 2016.
20 Coors, W.G. and D.W. Readey, J. Am. Ceram. Soc., 2002, 85(11), 2637-2640.   DOI
21 Aguadero, A., L. Fawcett, S. Taub, R. Woolley, K.-T. Wu, N. Xu, J. Kilner, and S. Skinner, J. Mater. Sci., 2012, 47(9), 3925-3948.   DOI
22 Karlberg, G.S., G. Wahnstrom, C. Clay, G. Zimbitas and A. Hodgson, J. Chem. Phys., 2006, 124(20), 204712.   DOI
23 Merkle, R. and J. Maier, Angew. Chem. Int. Ed., 2008, 47(21), 3874-3894.   DOI
24 Leonhardt, M., R.A. De Souza, J. Claus and J. Maier, J. Electrochem. Soc., 2002, 149(2), J19-J26.   DOI
25 Yu, J.H., J.-S. Lee and J. Maier, Angew. Chem. Int. Ed., 2007, 46(47), 8992-8994.   DOI
26 Mahato, N., A. Banerjee, A. Gupta, S. Omar and K. Balani, Prog. Mater. Sci., 2015, 72(Supplement C), 141-337.   DOI
27 Fajin, J.L.C., M.N. D. S. Cordeiro and J.R.B. Gomes, J. Phys. Chem. A, 2014, 118(31), 5832-5840.   DOI
28 Vollestad, E., C.K. Vigen, A. Magraso and R. Haugsrud, J. Membr. Sci., 2014, 461, 81-88.   DOI
29 Kim, J.-H., Y.-M. Kang, M.-S. Byun and K.-T. Hwang, Thin Solid Films, 2011, 520(3), 1015-1021.   DOI
30 Li, Y., P.-C. Su, L.M. Wong and S. Wang, J. Power Sources, 2014, 268, 804-809.   DOI
31 Yajima, T., H. Suzuki, T. Yogo and H. Iwahara, Solid State Ionics, 1992, 51(1-2), 101-107.   DOI
32 Kilner, J.A. and M. Burriel, Annu. Rev. Mater. Res., 2014, 44(1), 365-393.   DOI
33 Bhide, S.V. and A.V. Virkar, J. Electrochem. Soc., 1999, 146(6), 2038-2044.   DOI
34 Tanner, C.W. and A.V. Virkar, J. Electrochem. Soc., 1996, 143(4), 1386-1389.   DOI
35 Si, Y., R. Jiang, J.-C. Lin, H.R. Kunz and J.M. Fenton, J. Electrochem. Soc., 2004, 151(11), A1820-A1824.   DOI
36 Ralph, T.R. and Hogarth, M. P, Plat. Metals Rev., 2002, 46(3), 117-135.
37 Laosiripojana, N., W. Sangtongkitcharoen and S. Assabumrungrat, Fuel, 2006, 85(3), 323-332.   DOI