• Title/Summary/Keyword: Perovskite structure

Search Result 486, Processing Time 0.034 seconds

Sintering of ZrO2-modified 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 Piezoelectric Ceramics in a Reduced Atmosphere (ZrO2 첨가된 0.96(K0.5Na0.5)NbO3-0.04SrZrO3 압전세라믹스의 환원분위기 소결)

  • Kang, Kyung-Min;Cho, Jeong-Ho;Nam, Joong-Hee;Ko, Tae-Gyung;Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.563-567
    • /
    • 2011
  • The most widely used piezoelectric ceramics are lead oxide based ferroelectrics (PZT). However, the toxicity of lead oxide and its high vapor pressure during processing have led to a demand for alternative lead-free piezoelectric materials. We synthesized Lead-free piezoelectric ceramics of $0.96(K_{0.5}Na_{0.5})NbO_3-0.04SrZrO_3+x$ mol% $ZrO_2$ [KNN-SZ+$xZrO_2$; x= 0~0.10] doped with 0.1 wt% $MnO_2$ by a conventional solid state method. We investigated the piezoelectric properties and microstructures of these disk samples sintered in reduced atmosphere in order to evaluate the possibility of the multilayered piezoelectric ceramics having the base metal such as Ni as a internal electrode. All of these KNN-SZ samples sintered in 3%$H_2-97%N_2$ atmosphere at $1,140^{\circ}C$ exhibit pure perovskite structure irrespective of the content of $ZrO_2$. Meanwhile, the sintering denisty and piezoelectric properties such as $K_p$, $Q_m$ and $d_{33}$ of KNN-SZ samples as a function of $ZrO_2$ content show the maxima ($k_p$=28.07%, $Q_m$= 101.34, $d_{33}$= 156 pC/N) at x= 0.04 and it is likely that there is some morphotropic phase boundary(MPB) in this KNN-SZ+$xZrO_2$ composition system. These results indicate that the ceramic composition is a promising candidate material for applications in lead free multilayer piezoelectric ceramics.

BCTZ Addition on the Microstructure, Piezoelectric/Dielectric Properties and Phase Transition of NKLN-AS Piezoelectric Ceramics (BCTZ첨가가 NKLN-AS계 압전세라믹스의 미세구조와 압전/유전특성 및 상전이현상에 미치는 효과)

  • Lee, Woong-Jae;Ur, Soon-Chul;Lee, Young-Geun;Yoon, Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • Presently, the most promising family of lead-free piezoelectric ceramics is based on $K_{0.5}Na_{0.5}NbO_3$(KNN). Lithium, silver and antimony co-doped KNN ceramics show high piezoelectric properties at room temperature, but often suffer from abnormal grain growth. In the present work, the $(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$ component, which has relaxor ferroelectric characteristics, was doped to suppress the abnormal grain growth. To investigate this effect, Lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3-x(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$[KNLN-AS-xBCTZ] piezoelectric ceramics were synthesized by ball mill and nanosized-milling processes in lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3$ in order to suppress the abnormal grain growth. The nanosized milling process of calcined powders enhanced the sintering density. The phase structure, microstructure, and ferroelectric and piezoelectric properties of the KNLN-AS ceramics were systematically investigated. XRD patterns for the doped and undoped samples showed perovskite phase while tetragonality was increased with increasing BCZT content, which increase was closely related to the decrease of TO-T. Dense and uniform microstructures were observed for all of the doped BCZT ceramics. After the addition of BCTZ, the tetragonal-cubic and orthorhombic-tetragonal phase transitions shifted to lower temperatures compared to those for the pure KNNL-AS. A coexistence of the orthorhombic and tetragonal phases was hence formed in the ceramics with x = 0.02 mol at room temperature, leading to a significant enhancement of the piezoelectric properties. For the composition with x = 0.02 mol, the piezoelectric properties showed optimum values of: $d_{33}$ = 185 pC/N, $k_P$ = 41%, $T_C=325^{\circ}C$, $T_{O-T}=-4^{\circ}C$.

Effect of CuO Additions on Microstructures and Piezoelectric Properties of the 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ Ceramics (CuO 첨가에 따른 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ 세라믹스의 압전특성과 미세조직의 변화)

  • Jeon, So-Hyun;Kim, Min-Soo;Jeong, Soon-Jong;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.194-194
    • /
    • 2008
  • Lead oxide based ceramics, represented by PZT, are the most widely used materials for piezoelectric actuators, sensors, and transducers due to their excellent piezoelectric properties. In particular, high-performance multilayered piezoelectric ceramics for advanced electronic components have drawn great attention. In order to develop piezoelectric ceramics capable of being sintered at low temperature for multilayer piezoelectric device applications, the effect of CuO additions on the microstructures and electromechanical properties of the 0.4Pb$(Mg_{1/3}Nb_{2/3})O_3-0.25PbZrO_3-0.35PbTiO_3$ ceramics was investigated. The samples with CuO addition were synthesized by ordinary sintering technique. X-ray diffractions indicated that all samples formed a single phase perovskite structure. The addition of CuO improved the sinterability of the samples and caused an increase in the density and grain size at low temperature. The optimum sintering temperature was lowered by CuO additions. Excellent piezoelectric and electromechanical responses, $d_{33}$ ~ 663 pC/N, $k_p$ ~ 0.72, were obtained for the samples of high density with 0.1 wt% CuO addition sintered at $1050^{\circ}C$ for 4 h in air. These results show that the piezoelectric properties of PMNZT ceramics can be improved by controlling the microstructure and this system is potentially a good candidate as multilayer piezoelectric device for a wide range of electro-mechanical transducer applications.

  • PDF

Characterization of (Bi,La)$Ti_3O_12$ Ferroelectric Thin Films on $SiO_2/Si$/Si Substrates by Sol-Gel Method (졸-겔 방법으로 $SiO_2/Si$ 기판 위에 제작된 (Bi,La)$Ti_3O_12$ 강유전체 박막의 특성 연구)

  • 장호정;황선환
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2003
  • The $Bi_{3.3}La_{0.7}O_{12}$(BLT) capacitors with Metal-Ferroelectric-Insulator-Silicon structure were prepared on $SiO_2/Si$ substrates by using sol-gel method. The BLT thin films annealed at $650^{\circ}C$ and $700^{\circ}C$ showed randomly oriented perovskite crystalline structures. The full with at half maximum (FWHM) of the (117) main peak was decreased from $0.65^{\circ}$ to $0.53^{\circ}$ with increasing the annealing temperature from $650^{\circ}C$ to $700^{\circ}C$, indicating the improvement in the crystalline quality of the film. In addition, the grain size and $R_rms$ , values were increased with increasing the annealing temperatures, showing the rough film surface at higher annealing temperatures. From the capacitance-voltage (C-V) measurements, the memory window voltage of the BLT film annealed at $700^{\circ}C$ was found to be about 0.7 V at an applied voltage of 5 V. The leakage current density of the BLT film annealed at $700^{\circ}C$ was about $3.1{\times}10^{-8}A/cm^2$.

  • PDF

The Effect of NiO Addition to the PNN-PZT Piezoelectric Ceramics on Piezoelectric Properties (Pb(Ni1/3Nb2/3)O3-PZT 세라믹스 고용체에서 과잉 NiO첨가에 따른 압전특성 변화)

  • Choi Y. G.;Son Y. J.;Kweon J. C.;Cho K. W.;Yoon M. S.;Kim I. H.;Kim Y. M.;Ur S. C.
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.413-418
    • /
    • 2005
  • Perovskite $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3[PNN-PZT]$ ceramics were synthesized by conventional ceramic processing technique. In order to modify piezoelectric properties for sensor application in this system, NiO addition was considered to provide $Ni^{+2}$ as an acceptor, which was known to occupy with B site in the structure. The effect of NiO addition up to $8\;mol\%$ on the following piezoelectric properties as well as sintering properties was investigated. When NiO added more than $1\;mol\%$, average grain size was decreased and second phase was found to form. Moreover, the second phase caused decrease in relative dielectric constant $(\varepsilon_{33}T/\varepsilon0)$, electro-mechanical coupling factor $(k_p)$, and piezoelectric charge constant $(d_{33})$, while increasing mechanical quality factor $(Q_m)$. When $1\;mol\%$ NiO was added, density, dielectric properties and piezoelectric properties were abruptly increased.

Experimental Investigation of Variable Emittance Material Based on (La, Sr)MnO3 ((La, Sr)MnO3을 이용한 가변 방사율 소재에 관한 연구)

  • Han, Sunwoo;Choi, Bongsu;Song, Tae-Ho;Kim, Sun Jin;Lee, Bong Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.583-590
    • /
    • 2013
  • Variable emittance radiators can be used in a thermal management system in space because their total emittance changes depending on the temperature of the system. When the temperature of the system decreased, the emittance also decreased so as to minimize the heat loss to the environment. In contrast, when the temperature of the system increased, the emittance also increased such that radiation cooling could occur. Thermochromic materials, whose emittance is a function of the temperature, are often used in variable emittance radiators because no additional parts are needed. In this study, we fabricated a variable-emittance coating by using a sol-gel method based on LSMO ($La_{1-x}Sr_xMnO_3$) and experimentally characterized the emittance change with respect to temperature. Furthermore, we also examined the stability of LSMO film in space environments by exposing it to extremely low pressure and temperature.

Microstructures and Magnetic Properties of Multiferroic BiFeO3 Thin Films Deposited by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 증착된 Multiferroic BiFeO3 박막의 미세구조 및 자기적 특성)

  • Song, Jong-Han;Nam, Joong-Hee;Kang, Dae-Sik;Cho, Jung-Ho;Kim, Byung-Ik;Choi, Duck-Kyun;Chun, Myoung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.222-227
    • /
    • 2010
  • $BiFeO_3$ (BFO) thin films were deposited on Pt/Ti/$SiO_2$/Si(100) substrates by RF magnetron sputtering method at room temperature. The influence of the flow rate of $O_2$ gas on the preparation of $BiFeO_3$ thin films was studied. XRD results indicate that the $BiFeO_3$ thin films were crystallized to the perovskite structure with the presence of small amount of impurity phases. The flow rate of $O_2$ gas has great affect on the microstructures and magnetic properties of $BiFeO_3$ thin films. As flow rate of $O_2$ gas increased, roughness and grain size of the thin films increased. $BiFeO_3$ thin films exhibited weak ferromagnetic behavior at room temperature. The PFM images revealed correlation between the surface morphology and the piezoresponse, indicating that the piezoelectric coefficient is related to microstructure.

Effect of Tm2O3 addition on dielectric property of barium titanate ceramics for MLCCs (Tm2O3 첨가가 MLCC용 $BaTiO3 유전특성에 미치는 영향)

  • Kim, Jin-Seong;Lee, Hee-Soo;Kang, Do-Won;Kim, Jeong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2010
  • Thulium oxide-doped barium titanate ceramics for MLCCs with perovskite structure were prepared by a sintering process at $1320^{\circ}C$ for 2 h in a reduced atmosphere. The effect of $Tm_2O_3$ addition on dielectric property of barium titanate ceramics has been studied in terms of their microstructures. Moreover, the phase identification of the dielectric specimens was conducted to define the secondary phase (pyrochlore). The specimen doped with 1 mol% $Tm_2O_3$ exhibited the highest dielectric constant. However, the dielectric constants of specimens with more than 2 mol% $Tm_2O_3$ to $BaTiO_3$ were the lower values than that of 1 mol% doped one. The grain size and the formation of pyrochlore phase associated with the dielectric properties were examined through morphology development and the structural analysis. Furthermore, these data were compared with the property of the dielectric material doped with $Er_2O_3$. It could be concluded that the dielectric property of ceramic capacitors were attributed to the change of pyrochlore phase and the tetragonality of $BaTiO_3$ with doping.

Fabrication and Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes for Oxygen Separation (산소분리를 위한 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막 제조 및 투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.804-809
    • /
    • 2011
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes were prepared by extrusion. TGA results of green body membrane after extrusion showed three successive weight losses due to decomposition of organic additives and carbonate. Drying shrinkage rate of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes was no change after 68 h and higher in the membrane with large outer diameter. XRD and SEM results showed the sintered membranes were the single phase structure and dense. The stoichiometric molar ratio agreed well with composition ratio calculated by EDS results for $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane. Radial crushing strength of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane with 0.95 mm thickness was 5.7 kgf/$mm^2$ and the oxygen permeation rate of same membrane was 146.85 mL/min ($Jo_2$=2.33 mL/$min{\cdot}cm^2$) at $950^{\circ}C$. Therefore, it was known that use of vacuum pump was more effective than that of sweep gas to obtain higher oxygen permeation flux.

Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃) (MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상)

  • Kim, Kyoung-Bum;Jang, Young-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.