• 제목/요약/키워드: Permeate

검색결과 519건 처리시간 0.028초

중공사 나노여과막을 이용한 방향족 농약의 배제 특성 (Rejection Properties of Aromatic Pesticides by a Hollow Fiber NF Membrane)

  • 정용준;키소 요시아키;박순길;김종용;민경석
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.296-300
    • /
    • 2004
  • The rejection properties of 6 aromatic pesticides were evaluated by a continuous flow system equipped with a hollow fiber NF membrane. Different from the separation experiment of batch cell, the rejection and the removal could be calculated exactly because the concentration of feed, permeate and retentate was separately obtained. The lowest and the highest rejection were found in carbaryl(54.8%) and methoxychlor(99.2%), respectively, and the removals were always shown higher than rejections. This may be caused by some reasons such as the solute adsorption on the membrane, the variation of feed concentration. Although molecular weight, molecular width regarded as solute characteristics and log P(n-octanol/water partition coefficient) as hydrophobicity could be applied to explain the rejection property, these factors should be considered together for better analysis. According to the higher relationship between log B(solute permeability) and molecular weight, it was revealed that the solute separation with this membrane was influenced more by molecular weight.

Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

  • Mirfarah, Hesam;Mousavi, Seyyed Abbas;Mortazavi, Seyyed Sajjad;Sadeghi, Masoud;Bastani, Dariush
    • Membrane and Water Treatment
    • /
    • 제8권4호
    • /
    • pp.323-336
    • /
    • 2017
  • The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute permeation was carried out under applied pressure of 5 bar at $25^{\circ}C$. Surface properties of TFC membrane were characterized by ATR-FTIR, SEM and AFM. The performance test indicated that 3.5 wt% of MPD, 0.35 wt% of TMC and curing temperature of $75^{\circ}C$ are the optimum conditions. Moreover, the permeate flux was $4.3{\frac{L}{m^2\;h}}$ and acetic acid rejection was about 43% at these conditions.

Binding of Methylene Blue to two types of water soluble polymer and its removal by polyelectrolyte enhanced ultrafiltration

  • Mansour, Nadia Cheickh;Ouni, Hedia;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.87-94
    • /
    • 2018
  • The interactions of water soluble polymers with dye are studied by ultrafiltration using a molecular weight cut off of 10 KDa regenerated cellulose ultrafiltration membrane. Two water-soluble polymers, namely Poly (Sodium-4 Styrenesulfonate) (PSS) and Poly (Vinyl Alcohol) (PVA) were selected for this study. The effects of process parameters, such as, polyelectrolyte concentrations, transmembrane pressure, ionic strength and pH of solution on dye retention and permeation flux were examined. PSS enhanced ultrafiltration achieved dye retention as high as 99% as a result of complexation between polyanion containing aromatic groups and cationic dye. This result was confirmed by the red shift. The retention of dye decreases as the salt concentration increases, a high retention was obtained at pH above 4. However, in case of PVA, relatively low retention (50%) was observed. Ionic strength and pH has no significant effect on the removal of MB. The permeate flux depended slightly on polyelectrolytes concentrations, transmembrane pressure, salt concentration and pH.

Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles

  • AL-Hobaib, A.S.;El Ghoul, Jaber;El Mir, Lassaad
    • Membrane and Water Treatment
    • /
    • 제6권4호
    • /
    • pp.309-321
    • /
    • 2015
  • We report in this study the synthesis of mixed matrix reverse osmosis membranes by interfacial polymerization (IP) of thin film nanocomposite (TFNC) on porous polysulfone supports (PS). This paper investigates the synthesis of ZnO nanoparticles (NPs) using the sol-gel processing technique and evaluates the performance of mixed matrix membranes reached by these aerogel NPs. Aqueous m-phenyl diamine (MPD) and organic trimesoyl chloride (TMC)-NPs mixture solutions were used in the IP process. The reaction of MPD and TMC at the interface of PS substrates resulted in the formation of the thin film composite (TFC). NPs of ZnO with a size of about 25 nm were used for the fabrication of the TFNC membranes. These membranes were characterized and evaluated in comparison with neat TFC ones. Their performances were evaluated based on the water permeability and salt rejection. Experimental results indicated that the NPs improved membrane performance under optimal concentration of NPs. By changing the content of the filler, better hydrophilicity was obtained; the contact angle was decreased from $74^{\circ}$ to $32^{\circ}$. Also, the permeate water flux was increased from 26 to 49 L/m2.h when the content of NPs is 0.1 (wt.%) with the maintaining of lower salt passage of 1%.

플로우포밍 스플릿 공정 시 맨드릴의 응력 해석을 통한 파손 원인 분석 (A Study on Failure Analysis of Mandrel in the Flow Forming Split Process through Stress Analysis)

  • 원권희;홍승우;박희수;이상철;홍성진;현승균;김상열
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.384-393
    • /
    • 2022
  • The flow forming process consists of a split process, a divide process, and a forming process. The split process is a forming process in which rollers radially permeate a simple disc-shaped forging material and split it in both directions to form a top-bottom bidirectional cup. It is advantageous for post-processing to deepen the forming depth in the split process but this characteristic causes the failure near the edge of the mandrel during the actual process. The split process was analyzed using Rigid Plastic FEM, and the stress analysis of the mandrel was conducted to find the cause of the failure. It was found that the failure occurred due to fatigue accumulation damage caused by repeated residual stress.

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

순산소 고율포기시스템 및 침지식 MBR융합공정에서 Biofouling 제어 및 원인물질 규명에 관한 연구 (The Study of Biofouling Control and Cause Material in Hybrid Process of Pure Oxygen and Submerged Membrane Bio-reactor)

  • 이상민;김미형
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.44-53
    • /
    • 2011
  • Membrane bio-reactor (MBR) has several advantages over the conventional activated sludge process, including a high biomass, low sludge production, and better permeate quality. Therefore, the MBR have gained popularity for municipal and industrial wastewater treatment. However the MBR usually were used for sewage and low streng th wastewater treatment because of membrane fouling problem and limitation of oxygen transfer into biomass. In this study, the hybrid process combining MBR and pure oxygen was tested for high strength organic wastewater treatment in the COD loading range from 2 to $10kgCOD/m^3{\cdot}day$. The hybrid process, membrane coupled pure oxygen high compact reactor (MPHCR), had been operated for one year and operation parameters, the effect of COD loading, MLSS concentration and the location of membrane module were studied for membrane fouling characteristic. Also membrane resistance test and the component of foulant was analyzed to investigate what is specific foulant in the MBR.

휴대용 실내 미세먼지 농도 측정 장치 개발 (Development of a portable system for monitoring indoor particulate matter concentration)

  • 김유진;최현슬;고태식
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.45-51
    • /
    • 2022
  • Airborne particulate matter(PM) has been a global environmental problem. PM whose diameter is smaller than 10 ㎛ can permeate respiratory organs and has harmful effects on human health. Therefore, PM monitoring systems are necessary for management of PM and prevention of PM-induced negative effects. Conventional PM monitoring techniques are expensive and cumbersome to handle. In the present study, two types of PM monitoring devices were designed for measuring indoor PM concentration, portably. We experimentally investigated the performance of three commercial PM concentration measurement sensors in a closed test chamber. As a result, PM2008 sensor showed the best PM concentration measurement accuracy. Linear regression method was applied to convert PM concentration value acquired from PM2008 sensor into ground truth value. A mobile application(app.) was also created for users to check the PM concentration, easily. The mobile app. also provides safety alarm when the PM10 concentration exceeds 81 ㎛/m3. The developed hand-held system enables the facile monitoring of surrounding air quality.

스윕 가스-진공 혼합식 탈기막 시스템을 활용한 암모니아 제거 (Membrane Degassing Process of Sweep Gas-vacuum Combination Type for Ammonia Removal)

  • 윤홍식;민태진;이건희;김형탁;신완호
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.835-842
    • /
    • 2022
  • In this study, the membrane degassing process of the sweep gas - vacuum combination type was proposed for ammonia wastewater treatment. The effect of pH, initial ammonia concentration and scale-up on ammonia degassing performance was investigated. As a result, as the pH and the initial ammonia concentration increased, the degassing permeate flux was improved. On the other hand, the ammonia mass transfer coefficient increased as the initial ammonia reduced, which seems to be due to the driving force of the sweep gas-vacuum combination type membrane degassing system proposed in this study. In addition, 80 mg NH3/min of the ammonia degassing rate was achieved using a 6×28 inch size module. Better degassing performance is expected if consideration for maintaining vacuum pressure is involved in the scale-up design.

제올라이트 기반 투과증발 분리막: 총설 (Zeolite Based Pervaporation Membrane: A Review)

  • 이주엽;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제32권6호
    • /
    • pp.383-389
    • /
    • 2022
  • 막 분리 공정은 다양한 응용 분야에서 사용되는 중요한 기술이다. 이러한 분리 공정은 농도 구배, 압력 또는 전위구배 등의 구동력에 의해 수행된다. 투과증발은 용액 메커니즘에 기초한 분리 과정 중 하나이다. 분리막을 투과한 쪽에서 압력은 진공에 의해 감소되고 분리는 압력차에 의해 구동된다. 다공성 제올라이트 분리막을 통한 탈수 공정에 의해 에탄올 또는 이소프로필 알코올과 같은 연료 및 화학 물질의 순도를 향상시킨다. 이러한 분리막들은 높은 열적, 화학적, 기계적 안정성을 가지고 있다. 이 총설에서는 제올라이트 분리막에 의한 에탄올 회수 및 바이오 오일 탈수라는 두 개의 섹션으로 나누어 소개한다.