DOI QR코드

DOI QR Code

Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles

  • AL-Hobaib, A.S. (Institute of Atomic Energy Research, King Abdulaziz City for Science and Technology (KACST)) ;
  • El Ghoul, Jaber (Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics) ;
  • El Mir, Lassaad (Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics)
  • Received : 2014.12.24
  • Accepted : 2015.04.04
  • Published : 2015.07.25

Abstract

We report in this study the synthesis of mixed matrix reverse osmosis membranes by interfacial polymerization (IP) of thin film nanocomposite (TFNC) on porous polysulfone supports (PS). This paper investigates the synthesis of ZnO nanoparticles (NPs) using the sol-gel processing technique and evaluates the performance of mixed matrix membranes reached by these aerogel NPs. Aqueous m-phenyl diamine (MPD) and organic trimesoyl chloride (TMC)-NPs mixture solutions were used in the IP process. The reaction of MPD and TMC at the interface of PS substrates resulted in the formation of the thin film composite (TFC). NPs of ZnO with a size of about 25 nm were used for the fabrication of the TFNC membranes. These membranes were characterized and evaluated in comparison with neat TFC ones. Their performances were evaluated based on the water permeability and salt rejection. Experimental results indicated that the NPs improved membrane performance under optimal concentration of NPs. By changing the content of the filler, better hydrophilicity was obtained; the contact angle was decreased from $74^{\circ}$ to $32^{\circ}$. Also, the permeate water flux was increased from 26 to 49 L/m2.h when the content of NPs is 0.1 (wt.%) with the maintaining of lower salt passage of 1%.

Keywords

References

  1. Berardis, B., Civitelli, G., Condello, M., Lista, P., Pozzi, R., Arancia, G. and Meschini, S. (2010), "Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells", Toxicol. Appl. Pharm., 246(3), 116-127. https://doi.org/10.1016/j.taap.2010.04.012
  2. Berezkin, A.V. and Khokhlov, A.R. (2006), "Mathematical modeling of interfacial polycondensation", J. Polym. Sci. B: Polym. Phys., 44(18), 2698-2724. https://doi.org/10.1002/polb.20907
  3. Bottino, A., Capannelli, G. and Comite, A. (2000), "Preparation and characterization of Novel porous PVDFe $ZrO_2$ composite membranes", Desalination, 146(1-3), 35-40. https://doi.org/10.1016/S0011-9164(02)00469-1
  4. Chai, G.Y. and Krantz, W.B. (1994), "Formation and characterization of polyamide membranes via interfacial polymerization", J. Membr. Sci., 93(2), 175-192. https://doi.org/10.1016/0376-7388(94)80006-5
  5. Cornelius, C. Hibshman, C. and Marand, E. (2001), "Hybrid organic-inorganic membranes", Sep. Purif. Technol., 25(1-3), 181-193. https://doi.org/10.1016/S1383-5866(01)00102-2
  6. Cullity, B.D. (1978), Elements of X-ray Diffractions, Addison-Wesley, Reading, MA, USA, pp. 102-110.
  7. El Ghoul, J., Barthou, C. and El Mir, L. (2012a), "Synthesis by sol-gel process, structural and optical properties of nanoparticles of zinc oxide doped vanadium", Superlatt. Microstruct., 51(6), 942-951. https://doi.org/10.1016/j.spmi.2012.03.013
  8. El Ghoul, J., Barthou, C. and El Mir, L. (2012b), "Synthesis, structural and optical properties of nanocrystalline vanadium doped zinc oxide aerogel", Physica E: Low-dimensional Syst. Nanostruct., 44(9), 1910-1915. https://doi.org/10.1016/j.physe.2012.05.020
  9. El Ghoul, J., Bouguila, N., Gomez-Lopera, S.A. and El Mir, L. (2013), "Structural and optical properties of nanoparticles (V, Al) co-doped ZnO synthesized by sol-gel processes", Superlatt. Microstruct., 64, 451-459. https://doi.org/10.1016/j.spmi.2013.10.018
  10. Franklin, N., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E. and Casey, P.S. (2007), "Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and $ZnCl_2$ to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility", Environ. Sci. Technol., 41(24), 8484-8490. https://doi.org/10.1021/es071445r
  11. Freger, V. (2003), "Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization", Langmuir, 19(11), 4791-4797. https://doi.org/10.1021/la020920q
  12. Freger, V. and Srebnik, S. (2003), "Mathematical model of charge and density distributions in interfacial polymerization of thin films", J. Appl. Polym. Sci., 88(5), 1162-1169. https://doi.org/10.1002/app.11716
  13. Hu, W., Shiyan, C., Zhou, B. and Wang, H. (2010), "Facile synthesis of ZnO nanoparticles based on bacterial cellulose", Mater. Sci. Eng. B, 170(1-3), 88-92. https://doi.org/10.1016/j.mseb.2010.02.034
  14. Hurwitz, G., Guillen, G.R. and Hoek, E.M.V. (2010), "Probing polyamide membrane surface charge, zeta potential, wettability and hydrophilicity with cobalt contact angle measurements", J. Membr. Sci., 349(1-2), 349-357. https://doi.org/10.1016/j.memsci.2009.11.063
  15. Jadav, G.L. and Singh, P.S. (2009), "Synthesis of novel silica polyamide nanocomposite membrane with enhanced properties", J. Membr. Sci., 328(1-2), 257-267. https://doi.org/10.1016/j.memsci.2008.12.014
  16. Jeong, B.H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K. and Jawor, A. (2007), "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294(1-2), 1-7. https://doi.org/10.1016/j.memsci.2007.02.025
  17. Kim, C.K., Kim, J.H., Roh, I.J. and Kim, J.J. (2000), "The changes of membrane performance with polyamide molecular structure in the reverse osmosis process", J. Membr. Sci., 165(2), 189-199. https://doi.org/10.1016/S0376-7388(99)00232-X
  18. Krithiga, R. and Chandrasekaran, G. (2009), "Synthesis, structural and optical of vanadium doped zinc oxide nanograins", J. Crystal Growth, 311, 4610-4614. https://doi.org/10.1016/j.jcrysgro.2009.08.033
  19. Kwak, S.Y., Kim, S.H. and Kim, S.S. (2001), "Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of $TiO_2$ nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane", Env. Sci. Tech., 35, 2388-2394. https://doi.org/10.1021/es0017099
  20. Lee, S.H.S., Im, J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R. (2008), "Polyamide thin-film nanofiltration membranes containing $TiO_2$ nanoparticles", Desalination, 219(1-3), 48-56. https://doi.org/10.1016/j.desal.2007.06.003
  21. Li, J.H., Xu, Y.Y., Zhu, L.P., Wang, J.H. and Du, C.H. (2009), "Fabrication and characterization of a novel $TiO_2$ nanoparticle self-assembly membrane with improved fouling resistance", J. Membr. Sci., 326(2), 659-666. https://doi.org/10.1016/j.memsci.2008.10.049
  22. Lind, M.L., Ghosh, A.K., Jawor, A., Huang, X., Hou, W., Yang, Y. and Hoek, E.M.V. (2009), "Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes", Langmuir, 25(17), 10139-10145. https://doi.org/10.1021/la900938x
  23. Liu, F., Abed, M.R.M. and Li, K. (2011), "Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano gamma-$Al_2O_3$", J. Membr. Sci., 366(1-2), 97-103. https://doi.org/10.1016/j.memsci.2010.09.044
  24. Mercy, A.P., Upendra, N. and Ramamurthy, N. (2014), "Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites", Adv. Nano Res., Int. J., 2(2), 121-133. https://doi.org/10.12989/anr.2014.2.2.121
  25. Mitchell, G.E., Mickols, B., Hernandez-Cruz, D. and Hitchcock, A. (2011), "Unexpected new phase detected in FT30 type reverse osmosis membranes using scanning transmission X-ray microscopy", Polymer, 52(18), 3956-3962. https://doi.org/10.1016/j.polymer.2011.07.001
  26. Omri, K., El Ghoul, J., Lemine, O.M., Bououdina, M., Zhang, B. and El Mir, L. (2013), "Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol-gel technique", Superlatt. Microstruct., 60, 139-147. https://doi.org/10.1016/j.spmi.2013.04.029
  27. Pacheco, F.A., Pinnau, I., Reinhard, M. and Leckie, J.O. (2010), "Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques", J. Membr. Sci., 358(1-2), 51-59. https://doi.org/10.1016/j.memsci.2010.04.032
  28. Petersen, R.J. (1993), "Composite reverse-osmosis and nanofiltration membranes", J. Membr. Sci., 83(1), 81-150. https://doi.org/10.1016/0376-7388(93)80014-O
  29. Saleh, T.A. and Gupta, V.K. (2012), "Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance", Sep. Purif. Technol., 89, 245-251. https://doi.org/10.1016/j.seppur.2012.01.039
  30. Song, Y.J., Sun, P., Henry, L.L. and Sun, B.H. (2005), "Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process", J. Membr. Sci., 251(1-2), 67-79. https://doi.org/10.1016/j.memsci.2004.10.042
  31. Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. and Sun, Z. (2010), "Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles", Toxicol. Lett., 199(3), 389-397. https://doi.org/10.1016/j.toxlet.2010.10.003
  32. Sotto, A., Boromand, A., Balta, S., Darvishmanash, S., Kim, J.H., Van der Bruggen, B. (2011), "Nanofiltraiton membranes enhanced with $TiO_2$ nanoparticles: A comprehenisve study", Desal. Water Treat., 340(1-3), 179-183.
  33. Tian, C.S. and Shen, Y.R. (2009), "Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy", Proceedings of National Academy of Sciences of the United States of America, 106(36), 15148-15153. https://doi.org/10.1073/pnas.0901480106
  34. Vaishali, K., Gunjan, K., Ramdoss, S. and Balaprasad, A. (2014), "Synthesis of defective anisotropic polyaniline/silver nanocomposites", Adv. Nano Res., Int. J., 2(2), 111-119. https://doi.org/10.12989/anr.2014.2.2.111
  35. Wang, X.O., Li, X.Y. and Shih, K. (2011), "In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes", J. Membr. Sci., 368(1-2), 134-143. https://doi.org/10.1016/j.memsci.2010.11.038
  36. Wilf, M. (2007), The Guidebook of Membrane Desalination Technology, Balaban Desalination Publications, Italy.
  37. Wu, H., Tang, B. and Wu, P. (2010), "Novel ultrafiltration membranes prepared from a multiwalled carbon nanotubes/polymer composite", J. Membr. Sci., 362(1-2), 374-383. https://doi.org/10.1016/j.memsci.2010.06.064
  38. Xie, W., Geise, G.M., Freeman, B.D., Lee, H.-S., Byun, G. and McGrath, J.E. (2012), "Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine", J. Membr. Sci., 403-404, 152-161. https://doi.org/10.1016/j.memsci.2012.02.038
  39. Yuan, J.H., Chen, Y., Zha, H.X., Song, L.J., Li, C.Y., Li, J.Q. and Xia, X.H. (2010), "Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles", Colloids Surf. B, 76(1), 145-150. https://doi.org/10.1016/j.colsurfb.2009.10.028

Cited by

  1. Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles vol.8, pp.1, 2017, https://doi.org/10.12989/mwt.2017.8.1.051
  2. Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal vol.9, pp.4, 2018, https://doi.org/10.12989/mwt.2018.9.4.211
  3. Phenol removal by tailor-made polyamide-fly ash composite membrane: Modeling and optimization vol.10, pp.6, 2019, https://doi.org/10.12989/mwt.2019.10.6.431