• Title/Summary/Keyword: Permeable Concrete

Search Result 143, Processing Time 0.025 seconds

An Experimental Study on the Basic Properties of Penetrating repair material using Silicate-based Inorganic Materials (규산염계 무기 재료를 활용한 침투성 보수재의 기초 특성에 관한 실험적 연구)

  • Ha, Sang-Woo;Oh, Sung-Rok;Choi, Yung-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.39-45
    • /
    • 2017
  • In this study, permeable repair materials mainly composed of silicate - based inorganic materials(SIM), which are easily available domestically, were prepared as a basic study for the development of permeable repair materials using SIM. SIM were compared and examined for their performance as repair materials by selecting a product group which has many cases of use in foreign countries. The SIM used were mainly composed of sodium, potassium and lithium silicate. Performance evaluation of SIM was performed by absorption and penetration, compression and adhesion, rapid chloride ion penetration, rapid freezing and thawing, and chemical resistance test. According to the test results, SIM showed effective performance in all areas, mainly because SIM permeates into the interior of the capillary and has a dense internal microstructure. Therefore, it can be used variously to improve the durability of concrete based on the results of this experiment.

Combined influence of slip parameter and Reynolds number on Casson nanofluid flowing in stretching cylinder

  • Jalil, Mudassar;Hussain, Muzamal;Khadimallah, Mohamed A.;Iqbal, Waheed;Loukil, Hassen;Mouldi, Abir;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.369-375
    • /
    • 2022
  • Current exertion reports the numerical analysis of boundary layer slip flow of Casson Nano fluid along a permeable cylinder that is stretching in exponential manner. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. Numerical results are attained using a renowned numerical scheme shooting method with Runge-Kutta procedure of 6th-order. Influential role of relevant parameters like Reynolds, suction, Casson fluid and slip parameters on velocity profile is investigated. The effect of influence of slip parameter γ on temperature profile is seen through graph. To ensure the authenticity of numerical procedure, outcomes of some special cases of present work are compared with published work and strong agreement is noticed.

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

A Study on the Development and Performance Evaluation of Permeable GFRP Strengthening Panel for RC Structure (투수성 GFRP 보강 복합체 개발 및 투수성에 대한 연구)

  • Jo, Byung Wan;Kang, Seok Won;Park, Cheol;Kim, Jang Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • Recently the exterior attaching reinforcement method is being often used by using FRP (Fiber Reinforced Polymer) as a method of strengthening concrete structure. this FRP exterior attaching reinforcement method has several advantages like high intensity, stiffness, good durability and easy installment comparing to its weight. but its structure is airtight covered by reinforcement material whose water permeability is low and water can't be discharged, thus it may provoke a damage to the structure after a long while. the main purposes of this study are to develop GFRP reinforcement material which can discharge the surface water properly and to measure its special functions. for this, we have changed the normal reinforcement material to water permeable structure and measured its water permeance modulus by an indoor test which shows the process of water permeance with the parameter of contained GFRP quantity. also tried to verify the measured value of the water permeance modulus in theory by analyzing the numbers on water permeance process. the test result showed that the biggest quantity of water, 0.5129 g/h $m^2$ was discharged when the fiber contained quantity reached at 75% and the tensile strength was also biggest by 476.6MPa at 75%, so it appeared that COSREM GP panel with 75% fiber contained quantity is the best in ventilation and structure.

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF

Psychological Character Analysis of Pavement Materials (포장재료의 심리적 특성 분석)

  • Kim Dae-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.43-51
    • /
    • 2004
  • Recently, the importance of choosing correct pavement materials has been increasing in urban spaces and streets. Much research regarding the pavement theory and construction method have been conducted, but analysis in terms of human psychological character has not yet been performed. The purpose of this study is to investigate the psychological characters to 12 pavement materials, that are commonly used in our urban spaces and streets. The results of the psychological character for each pavement material can be summarized as follows: 1. The psychological characters to each pavement material were as follows: ① Clay embodies a natural, traditional, soft and intimate psychological character; ② Pebble stone has a natural, hard, cool and intimate psychological character; ③ Turf grass incorporates an intimate and soft psychological character; ④ Ceramic brick has an artificial and hard psychological character; ⑤ Tile pavement has a modern, artificial, hard and cool psychological character; ⑥ Water permeable concrete has a modern and artificial psychological character; ⑦ Flag stone has a natural psychological character; ⑧ Granite has a modern and artificial psychological character; ⑨ Portland concrete has an artificial and hard psychological character; ⑩ Small compacted brick has an artificial, dynamic and modern psychological character; ⑪ Wood block pavement has a natural and traditional psychological character; ⑫ Asphalt concrete pavement has a modern, hard and artificial character. 2. On the results of the cluster analysis regarding psychological indexes for 12 pavement materials, pavement materials were categorized in 3 clusters. Among them, one cluster was mainly used as the most popular pavement material in our urban spaces and streets. From this point of view, psychological character for pavement material in our urban spaces and streets was not as various as we expected. 3. In conclusion, the proper selection of pavement materials was very important and the factors affecting the human psychological character should be considered in the design of urban spaces and streets.

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

Effects of Thermal Properties and Water Retention Characteristics of Permeable Concrete Pavement on Surface Temperature (투.보수성 시멘트 콘크리트 포장의 열물성 및 수분보유특성이 표면온도에 미치는 영향)

  • Ryu Nam-Hyang;Yoo Byung-Rim
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.1 s.114
    • /
    • pp.21-36
    • /
    • 2006
  • This study was undertaken to analyze the effects of pavement thermal properties and water retention characteristics on the surface temperature of the gray permeable cement concrete pavement during the summer. Following is a summary of major results. 1) The hourly surface temperature of pavement could be well predicted with a heat transfer model program that incorporated the input data of major meteorological variables including solar radiation, atmospheric temperature, dew point, wind velocity, cloudiness and the evaporation rate of the pavements predicted by the time domain reflectometry (TDR) method. 2) When the albedo was changed to 0.5 from an arbitrary starting condition of 0.3, holding other variables constant, the peak surface temperature of the pavement dropped by 11.5%. When heat capacity was changed to $2.5\;kJm^{-3}K^{-1}\;from\;1.5\;kJm^{-3}K^{-1}$, surface temperature dropped by 8.0%. When daily evaporation was changed to 1 mm from 2 mm, temperature dropped by 5.7%. When heat conductivity was changed to $2.5\;Wm^{-1}K^{-1}\;from\;1.5\;Wm^{-1}K^{-1}$, the peak surface temperature of the pavement fell by 1.2%. The peak pavement surface temperature under the arbitrary basic condition was $24.46^{\circ}C$ (12 a.m.). 3) It accordingly became evident that the pavement surface temperature can be most effectively lowered by using materials with a high albedo, a high heat capacity or a high evaporation at the pavement surface. The glare situation, however, is intensified by raising of the albedo, moreover if reflected light is absorbed into surrounding physical masses, it is changed into heat. It accordingly became evident that raising the heat capacity and the evaporative capacity may be the moot acceptable measures to improve the thermal characteristics of the pavement. 4) The sensitivity of the surface temperature to major meteorological variables was as follows. When the daily average temperature changed to $0^{\circ}C\;from\;15^{\circ}C$, holding all other variables constant, the peak surface temperature of the pavement decreased by 56.1 %. When the global solar radiation changed to $200\;Wm^{-2}\;from\;600\;Wm^{-2}$, the temperature of the pavement decreased by 23.4%. When the wind velocity changed to $8\;ms^{-1}\;from\;4\;ms^{-1}$, the temperature decreased by 1.4%. When the cloudiness level changed to 1.0 from 0.5, the peak surface temperature decreased by 0.7%. The peak pavement surface temperature under the arbitrary basic conditions was $24.46^{\circ}C$ (12 a.m.)

A Study on the Mechanical Properties of Steel Fiber Reinforced Porous Concrete for Pavement Using Slag Aggregate and Fly Ash (슬래그골재와 플라이애시를 이용한 강섬유 보강 포장용 투수콘크리트의 역학적 특성에 관한 실험적 연구)

  • Park, Seung-Bum;Lee, Jun;Jang, Young-Il;Lee, Byung-Jae
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.93-104
    • /
    • 2007
  • This study evaluates the mechanical properties of steel fiber reinforced porous concrete for pavement according to content of slag aggregate and fly ash to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. As a result, void ratio and permeability coefficient of porous concrete for pavement increased a little as mixing rate of slag aggregates increased. Void ratio and permeability coefficient increased a lot as mixing rate of fly ash decreased. As fly ash was mixed, national regulation of permeable concrete for pavement(8% and 0.1 cm/sec) was met. Compressive strength and flexural strength decreased as mixing rate of slag aggregates increased, but they increased a lot as mixing rate of fly ash increased. Even when slag aggregates were mixed 50% with 5% fly ash mixed, national regulation of pavement concrete(18MPa and 4.5MPa) was met. In addition, compared to non-mixture, flexural strength increased about 22.8% when 0.75vol.% of steel fiber was added. Regarding sliding resistance, BPN increased as mixing rate of slag aggregates increased. But BPN decreased as fly ash was mixed. Compared to crushed stone aggregates, abrasion resistance and fleers-thaw resistance decreased as mixing rate of slag aggregates increased. When fly ash was mixed, abrasion resistance and freeze-thaw resistance improved remarkably. Compared to non-mixture, 10% mixture of fly ash improved abrasion resistance and freeze-thaw resistance about 5.6% and 14.3 respectively.

  • PDF