DOI QR코드

DOI QR Code

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique

비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가

  • 박선종 (한국과학기술원 건설 및 환경공학과) ;
  • 임홍재 (한국과학기술원 건설 및 환경공학과) ;
  • 곽효경 (한국과학기술원 건설 및 환경공학과)
  • Received : 2012.02.23
  • Accepted : 2012.09.03
  • Published : 2012.12.31

Abstract

This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

이번 연구에서는 비선형 음향효과를 기반으로 한 비선형 초음파 변조 기법을 통해 열손상 콘크리트의 미세균열 정도를 평가할 수 있는 방법을 제안하였다. 화재 시 콘크리트 구조물은 물리적, 화학적 변화에 따른 콘크리트 내 미세균열이 발생하므로, 기존 초음파 비파괴 기법의 민감도 한계를 극복한 비파괴 기법의 도입이 필요하다. 비선형 초음파 기법은 초음파와 저주파의 변조파로부터 열손상 평가 인자인 비선형인자를 측정하며, 이는 열손상 콘크리트의 미세균열에 적합한 민감도를 가진다. 이 연구에서는 SEM 관측, 열손상 전후 콘크리트의 투수공극량 변화 측정으로부터 수열온도에 따라 미세균열이 급격하게 발생함을 보였으며, 수열온도별 콘크리트의 초음파 전파속도 측정을 통해 제안된 방법의 민감도를 검증하였다. 추가적으로 열손상에 따른 미세균열이 콘크리트의 성능저하에 미치는 영향을 파악하고자 열손상 콘크리트 시편의 압축강도 측정을 수행하였다. 측정값 및 실험값의 연관성을 파악하여 비선형 초음파 변조 기법이 열손상 콘크리트의 미세균열 평가에 적합함을 보였으며, 향후 압축강도 추정에 대한 적용 가능성을 확인하였다.

Keywords

References

  1. Bazant, Z. P. and Kaplan, M. F., Concrete at High Temperature: Material Properties and Mathematical Models, Longman Group Limited, 1996, pp. 6-85.
  2. Kim, W. J., "Fire of Reinforce Concrete Structure," Magazine of the Korea Concrete Institute, Vol. 20, No. 5, 2008, pp. 12-21.
  3. Oh, J. S., Song, H., Song, D. Y., and Park, G. B., "Diagnosis and Repair Methods of Fire Damaged Concrete Structure," Infrastructure Safety, Vol. 17, No. 5, 2005, pp. 54-62.
  4. Kim, Y. E., "Nondestructive Testing of Concrete for its Stringth, Chemical Degradation, and Damage due to Fire," Magazine of the Korea Concrete Institute, Vol. 10, No. 2, 1998, pp. 50-64.
  5. Chew. M. Y. L., "The Assessment of Fire Damaged Concrete," Building and Environment, Vol. 28, No. 1, 1993, pp. 97-102. https://doi.org/10.1016/0360-1323(93)90010-Z
  6. Colombo, M. and Felicetti, R., "New NDT Techniques for the Assessment of Fire-Damaged Concrete Structures," Fire Safety Journal, Vol. 42, No. 6, 2007, pp. 461-472. https://doi.org/10.1016/j.firesaf.2006.09.002
  7. Warnemuende, K. and Wu, H. C., "Actively Modulated Acoustic Nondestructive Evaluation of Concrete," Cement and Concrete Research, Vol. 34, No. 4, 2004, pp. 563-570. https://doi.org/10.1016/j.cemconres.2003.09.008
  8. Chen, J., Jayapalan, A. R., Kim, J. Y., Kurtis, K. E., and Jacobs, L. J., "Rapid Evaluation of Alkali-Silica Reactivity of Aggregates Using a Nonlinear Resonance Spectroscopy Technique," Cement and Concrete Research, Vol. 40, No. 6, 2010, pp. 914-923. https://doi.org/10.1016/j.cemconres.2010.01.003
  9. Zheng, Y., Maev, R. Gr., and Solodov, I. Yu., "Nonlinear Acoustic Applications for Material Characterization: a Review," Canadian Journal of Physics, Vol. 77, No. 12, 1999, pp. 927-967. https://doi.org/10.1139/cjp-77-12-927
  10. Jhang, K. Y., "Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material: A Review," International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 1, 2009, pp. 123-135. https://doi.org/10.1007/s12541-009-0019-y
  11. Hikata, A., Chick, B. B., and Elbaum, C., "Dislocation Contribution to the Second Harmonic Generation of Ultrasonic Waves," Journal of Applied Physics, Vol. 36, No. 1, 1965, pp. 229-236. (doi: http://dx.doi.org/10.1063/1.1713881)
  12. Abeele, K. E. A. Van Den, Johnson, P. A., and Sutin, A., "Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS)," Research in Nondestructive Evaluation, Vol. 12, Issue 1, 2000, pp. 17-30. https://doi.org/10.1080/09349840009409646
  13. Abbele, K. E. A. Van Den, Carmeliet, J., Cate, J. A. T., and Johnson, P. A., "Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy," Research in Nondestructive Evaluation, Vol. 12, Issue 1, 2000, pp. 31-42. https://doi.org/10.1080/09349840009409647
  14. Abeele, K. E. A. Van Den, Sutin, A., Carmeliet, J., and Johnson, P. A., "Micro-Damage Diagnostics Using Nonlinear Elastic Wave Spectroscopy," NDT&E International, Vol. 34, 2001, pp. 239-248. https://doi.org/10.1016/S0963-8695(00)00064-5
  15. Shah, A. A. and Ribakov, Y., "Non-Linear Ultrasonic Evaluation of Damaged Concrete Based on Higher Order Harmonic Generation," Materials and Design, Vol. 30, 2009, pp. 4095-4102. https://doi.org/10.1016/j.matdes.2009.05.009
  16. Payan, C., Garnier, V., and Moysan, J., "Effect of Water Saturation and Porosity on the Nonlinear Elastic Response of Concrete," Cement and Concrete Research, Vol. 40, No. 3, 2010, pp. 473-476. https://doi.org/10.1016/j.cemconres.2009.10.021
  17. Les'nicki, K. J., Kim, J. Y., Kurtis, K. E., and Jacobs, L. J., "Characterization of ASR Damage in Concrete Using Nonlinear Impact Resonance Acoustic Spectroscopy Technique," NDT&E International, Vol. 44, No. 8, 2011, pp. 721-727. https://doi.org/10.1016/j.ndteint.2011.07.010
  18. Holcomb, D. J., "Discrete Memory in Rock: A Review," Journal of Rheology, Vol. 28, No. 6, 1984, pp. 725-728. (doi: http://dx.doi.org/10.1122/1.549772)
  19. Guyer, R. A. and Johnson, P. A., "Nonlinear Mesoscopic Elasticity: Evidence for a New Class of Materials," Physics Today, Vol. 52, No. 4, 1999, pp. 30-36. https://doi.org/10.1063/1.882648
  20. Donskoy, D., Sutin, A., and Ekimov, A., "Nonlinear Acoustic Interaction on Contact Interfaces and Its Use for Nondestructive Testing," NDT&E International, Vol. 34, No. 4, 2001, pp. 231-238. (doi: http://dx.doi.org/10.1016/S0963-8695(00)00063-3)
  21. Stutzman, P., "Scanning Electron Microscopy in Concrete Petrography," In Calcium Hydroxide in Concrete, Proceedings, Skalny, J., Gebauer, J., Odler, I., eds., The American Ceramic Society, Anna Maria Island, FL, 2001, pp. 59-72.
  22. Stutzman, P. and Clifton, J., "Specimen Preparation for Scanning Electron Microscopy, in: L. Jany, A. Nisperos (Eds.)," Proceedings of the Twenty-First International Conference on Cement Microscopy, International Cement Microscopy Association, Duncanville, Las Vegas, NV, Vol. 21, 1999, pp. 10-22.
  23. ASTM International, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM C 642-06, American Society for Testing and Materials, 2006, 3 pp.
  24. Korean Industrial Standards, Standard Test Method for Compressive Strength of Concrete, KS F 2405, 2005, 10 pp.
  25. ASTM International, Standard Test Method for Pulse Velocity through Concrete, ASTM C 597-09, American Society for Testing and Materials, 2009, 4 pp.

Cited by

  1. Analysis of Factors Influencing Fire Damage to Concrete Using Nonlinear Resonance Vibration Method vol.35, pp.2, 2015, https://doi.org/10.7779/JKSNT.2015.35.2.150
  2. Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete vol.36, pp.2, 2016, https://doi.org/10.7779/JKSNT.2016.36.2.121
  3. Evaluation of Fe-Based Shape Memory Alloy (Fe-SMA) as Strengthening Material for Reinforced Concrete Structures vol.8, pp.5, 2018, https://doi.org/10.3390/app8050730