• Title/Summary/Keyword: Peripheral nerve signal

Search Result 26, Processing Time 0.024 seconds

The Value of MRI in Diagnosis of Peripheral Nerve Disorders (말초신경질환에서 자기공명영상의 진단적 가치)

  • Lee, Han Young;Lee, Jang Chull;Kim, Il-Man;Lee, Chang-Young;Ikm, Eun;Kim, Dong Won;Yim, Man Bin
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.9
    • /
    • pp.1120-1126
    • /
    • 2001
  • Objective : The development of magnetic resonance neurography(MRN) has made it possible to produce highresolution images of peripheral nerves themselves, as well as associated intraneural and extraneural lesions. We evaluated the clinical application and utility of high-resolution MRN techniques for the diagnosis and treatment of a variety of peripheral nerve disorder(PND)s. Material and Method : MRN images were obtained using T1-weighted spin echo, T2-weighted fast spin echo with fat suppression, and short tau inversion recovery(STIR) fast spin-echo pulse sequences. Fifteen patients were studied, three with brachial plexus tumors, five with chronic entrapment syndromes, and seven with traumatic peripheral lesions. Ten patients underwent surgery. Results : In MRN with STIR sequences of axial and coronal imagings, signals of the peripheral nerves with various lesions were detected as fairly bright signals and were discerned from signals of the uninvolved nerves. Increased signal with proximal swelling and distal flattening of the median nerve were seen in all patients of carpal tunnel syndrome. Among the eight patients with brachial plexus injury or tumors, T2-weighted MRN showed increased signal intensity in involved roots in five, enhanced mass lesions in three, and traumatic pseudomeningocele in three. Other associated MRI findings were adjacent bony signal change, neuroma, root adhesion and denervated muscle atophy with signal change. Conclusion : MRN with high-resolution imaging can be useful in the preoperative evaluation and surgical planning in patients with peripheral nerve lesions.

  • PDF

Implantable Nerve Cuff Electrode with Conductive Polymer for Improving Recording Signal Quality at Peripheral Nerve (말초 신경 신호 기록의 효율성 개선을 위한 전도성 폴리머가 적용된 생체삽입형 커프형 신경전극)

  • Park, Sung Jin;Lee, Yi Jae;Yun, Kwang-Seok;Kang, Ji Yoon;Lee, Soo Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • This study demonstrates a polyimide nerve cuff electrode with a conductive polymer for improving recording signal quality at peripheral nerve. The nerve cuff electrodes with platinum (Pt), iridium oxide (IrOx), and poly(3,4-ethylenedioxythiophene): p-toluene sulfonate (PEDOT:pTS) were fabricated and investigated their electrical characteristics for improving recorded nerve signal quality. The fabricated nerve cuff electrodes with Pt, IrOx, and PEDOT:pTS were characterized their impedance and CDC by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The impedance of PEDOT:pTS measured at 1 kHz was $257{\Omega}$, which was extremely lower than the value of the nerve cuff electrodes with IrOx ($15897{\Omega}$) and Pt ($952{\Omega}$), respectively. Furthermore, the charge delivery capacity (CDC) of the nerve cuff electrode with PEDOT:pTS was dramatically increased to 62 times than the nerve cuff electrode with IrOx. In ex-vivo test using extracted sciatic nerve of spaque-dawley rat (SD rat), the PEDOT:pTS group exhibited higher signal-to-interference ratio than IrOx group. These results indicated that the nerve cuff electrode with PEDOT:pTS is promising for effective implantable nerve signal recording.

Effects of Nerve Regeneration by Bogijetong-tang Treatment on Peripheral Nerves Damaged by Taxol and Crush Injury (보기제통탕이 말초신경병증 모델에서 신경 손상 회복에 미치는 영향)

  • Park, Sang-Woo;Kim, Chul-Jung;Cho, Chung-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.384-404
    • /
    • 2013
  • Objectives : Effects of Bogijetong-tang (BJT) on peripheral nerve regeneration have been reported in a previous study on BJT but additional study on a damaged peripheral neuropathy where its damage level is physically and chemically more severe was needed. Plus, this study was conducted because there haven't been any studies for BJT on central nerve regeneration. Methods : In order to check the effect on central nerve regeneration, the study on cerebellum cells was started and the sciatic nerve was used to observe the effects on a peripheral nerve which was severely damaged both physically and chemically. Nerve recovery effects were observed by analyzing target proteins such as phospho-extracellular signal-regulated kinase, ${\beta}1$ integrin, neurofilament 200, growth-associated protein-43, cyclin-dependent kinase 1, phospho-vimentin, phospho-Smad, and caspase 3. Results : The significant changes of target protein in cerebellum neurons have been observed. The changes of index protein on the axon regeneration and the nerve recovery in the sciatic nerve have been observed and the effects on cell protection were observed, as well. Conclusions : This study confirmed that BJT made a significant influence on nerve protection and recovery of a damaged peripheral neuropathy and it also made a possibility of its regeneration in a damaged central nerve injury.

Neural Recordings Obtained from Peripheral Nerves Using Semiconductor Microelectrode (반도체 미세전극을 이용한 말초 신경에서의 신경 신호 기록)

  • Hwang, E.J.;Kim, S.J.;Cho, H.W.;Oh, W.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.31-34
    • /
    • 1997
  • A semiconductor microelectrode array has been successfully used in obtaining single unit recordings from medial giant nerve of clay fish, rat saphenous nerve and abdominal ganglia of aplysia. The recording device fabricated using silicon microfabrication techniques is a depth-probe type and, previously, has been mostly used to record from central nerve system of vertebrates. From invertebrates, and also from peripheral nerves of vertebrates, however, the quality of the recorded signal depends heavily on the recording conditions, such as the proximity of the electrode site to the nerve cells and the size of the neuron. We have modeled the signal to noise ratio as unctions of these parameters and compared the experimental data with the calculated values thus obtained.

  • PDF

R&D Trends in Bioelectronic Medicines (전자약 연구개발 동향)

  • Kim, Y.H.;Jung, S.D.;Lee, S.K.;Kim, H.J.;Byun, C.W.;Lee, J.I.;Song, K.B.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.98-110
    • /
    • 2020
  • Precise detection and modulation of electrical signal patterns passing through peripheral nerves connecting organs and brainstems, referred to as electroceuticals or bioelectronic medicines, have emerged as a new type of treatments for neural disorders and chronic diseases. With the rapid advancements in neural interface technologies, electroceuticals are the focus of treatments for these disorders or diseases. In this paper, we introduced electroceuticals as an extension of neuromodulation for the treatment of chronic diseases, such as diabetes, rheumatoid arthritis, obesity, and bladder dysfunction, without side effects that are unavoidably elicited when conventional drugs are taken. Further, this paper reviewed the anatomy of the peripheral nervous system, treatment examples for chronic diseases, technological demands for peripheral nerve interfacing, global R&D programs and market trends for electroceuticals, and prospects on electroceuticals.

Neuropathic Pain Behaviors and the Change of Spinal Neuropeptides following Peripheral Nerve Injury in Neonatal Rats

  • Yoon, Young-Sul;Back, Seung-Keun;Kim, Hee-Jin;Na, Heung-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Objective : It has been suggested that the occurrence of persistent pain signal during the early postnatal period may alter an individual's response to pain later in life. The aim of this study is to assess whether neonatal nerve injury resulted in long-lasting consequences on nociceptive system in the rat. Methods : We examined whether neuropathic pain behaviors and the changes of spinal neuropeptides [SP, CGRP, VIP and VIP] induced by peripheral nerve injury within 1 day after birth [Neonate group] were different from those at 8 weeks after birth [Mature group]. Results : The Neonate group showed more robust and long-lasting pain behaviors than the Mature group. Immunohistochemical findings demonstrated that spinal SP- & CGRP-immunoreactivities[ir] of the ipsilateral to the contralateral side increased in the Neonate group, whereas those decreased in the Mature group. In addition, increase in spinal VIP- & NPY-ir of the ipsilateral to the contralateral side was more robust in the Mature group than in the Neonate group. Conclusion : These results suggest that peripheral nerve injury in the early postnatal period may result in long-lasting and potentially detrimental alterations in nociceptive pathways.

Korean Vowel Recognition using Peripheral Auditory Model (말초 청각 계통 모델을 이용한 한국어 모음 인식)

  • Yun, Tae-Seong;Baek, Seung-Hwa;Park, Sang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 1988
  • In this study, the recognition experiments for Korean vowel are performed using peripheral auditory model. In addition, for the purpose of objective comparison, the recognition experiments are performed by extracting LPC cepstrum coefficients for the same speech data. The results are as follows. 1) The time and the frequency responses of the auditory model show that important features of input signal are involved in the responses of inner ear and auditory nerve. 2) The recognition results for Korean vowel show that the recognition rate by auditory model output is higher than the recognition rate by LPC cepstrum coefficients. 3) The adaptation phenomenon of auditory nerve provides useful characteristics for the discrimination of vowel signal.

  • PDF

The Feasibility Study of 3-D Magnetic Resonance Neurograms (자기공명단층촬영장치를 이용한 신경조영영상의 기초연구)

  • Mun, C.W.;Lee, S.Y.;Lim, T.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.28-30
    • /
    • 1993
  • We have investigated the feasibility study, especially for optimal TR, to obtain 3-D MR neurographic imaging (neurograms or nervography) which shows the distribution of peripheral nerve fibers at the human forearm using 4.7 T magnet. To peform a successful formation of MR neurographic imaging, nerve signal should be separated from the other signal comes from surrounding muscle or fat, because nerves are usually embeded in muscle or fat. Generally, it is well known that nerve has shoter T1 value than that of muscle. Thus, repetition time was optimized to maximize the signal intensity defference between the muscel and nerve. We have also used spin-echo(SE) sequence with long echo time($60{\sim}90\;msec$) to enhance the different signal intensity between muscles and pheriperal nerves base on the fact that muscle tissue has longer T2 relaxation lime than that or nerve.

  • PDF

Intraneural Ganglion of the Digital Nerve of the Hand - A Case Report - (수부에서 수지 신경의 신경내 결절종 - 증례 보고 -)

  • Park, Do-Young;Lee, Yu-Sang;Han, Kyeong-Jin
    • Archives of Reconstructive Microsurgery
    • /
    • v.20 no.1
    • /
    • pp.78-81
    • /
    • 2011
  • Intraneural ganglia in the upper extremity are rare, and the involvement of the digital nerve of hand has not been reported. The following case report demonstrates a 57-year-old woman with a symptomatic nodular mass on the thenar area of the left hand. Magnetic resonance images showed a lobulated, homogeneous mass of high signal intensity on T2-weighted images and low signal intensity with peripheral enhancement on T1-weighted images. Excisional biopsy and histopathologic examination revealed an intraneural ganglion of the digital nerve of the thumb. Her symptom disappeared immediately after the surgery, and has remained free of abnormal sensation and parestheia for the 3-year follow-up period.

  • PDF

Correlation between Magnetic Resonance Image Signal Changes and Electromyographic Findings after Sciatic Nerve Transection in the Rat (백서의 좌골신경 절단 후 비복근의 자기공명영상 신호강도 변화와 근전도 소견의 관계)

  • Lee, Joo Hwan;Lee, Jang Chul;Kim, Dong Won;Park, Ki Young;Lee, Sung Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2000
  • Objectives : The evaluation of peripheral nerve injuries has traditionally relied on a clinical history, physical examination, and electrodiagnostic studies. The purpose of the present study was to examine serial magnetic resonance image(MRI) changes following acute muscle denervation under experimental conditions and to identify potential advantages and disadvantages of this use of MRI. Methods : An experimental transection of right sciatic nerve on Spargue-Dawley rats was performed. MRI was performed with T1-weighted spin-echo and STIR sequences. The imaging findings were compared with EMG in order to determine its sensitivity relative to this standard procedure. A simultaneous histopathological study provided information about the morphological basis of the imaging findings. Signal intensities were expressed as a ratio of abnormal to normal. Results : The signal intensity ratio of muscles with the STIR sequence was increased significantly at 2 weeks after sciatic nerve transection(p<0.05), although definite signal change was seen as early as 4 days postdenervation in one. EMG revealed significant denervation potential from 3 days after nerve transection. Diffuse cell atrophy was revealed hostologically at 2 weeks after transection, which was at the same time of significant signal change in MRI. Conclusion : MRI signal changes in denervated muscles secondary to nerve injury correlate with the degree of muscle atrophy on histologic examination. In addition to EMG, MRI can document the course of muscle atrophy and mesenchymal abnormalities in denervation. These results indicate that MRI can play a complementary role in the evaluation of patients with denervation.

  • PDF