DOI QR코드

DOI QR Code

Implantable Nerve Cuff Electrode with Conductive Polymer for Improving Recording Signal Quality at Peripheral Nerve

말초 신경 신호 기록의 효율성 개선을 위한 전도성 폴리머가 적용된 생체삽입형 커프형 신경전극

  • Park, Sung Jin (Center for BioMicroSystems, Korea Institute of Science and Technology) ;
  • Lee, Yi Jae (Center for BioMicroSystems, Korea Institute of Science and Technology) ;
  • Yun, Kwang-Seok (Department of Electronic Engineering, Sogang University) ;
  • Kang, Ji Yoon (Center for BioMicroSystems, Korea Institute of Science and Technology) ;
  • Lee, Soo Hyun (Center for BioMicroSystems, Korea Institute of Science and Technology)
  • 박성진 (한국과학기술연구원 바이오마이크로시스템연구단) ;
  • 이이재 (한국과학기술연구원 바이오마이크로시스템연구단) ;
  • 윤광석 (서강대학교 전자공학과) ;
  • 강지윤 (한국과학기술연구원 바이오마이크로시스템연구단) ;
  • 이수현 (한국과학기술연구원 바이오마이크로시스템연구단)
  • Received : 2014.10.30
  • Accepted : 2014.11.28
  • Published : 2015.01.31

Abstract

This study demonstrates a polyimide nerve cuff electrode with a conductive polymer for improving recording signal quality at peripheral nerve. The nerve cuff electrodes with platinum (Pt), iridium oxide (IrOx), and poly(3,4-ethylenedioxythiophene): p-toluene sulfonate (PEDOT:pTS) were fabricated and investigated their electrical characteristics for improving recorded nerve signal quality. The fabricated nerve cuff electrodes with Pt, IrOx, and PEDOT:pTS were characterized their impedance and CDC by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The impedance of PEDOT:pTS measured at 1 kHz was $257{\Omega}$, which was extremely lower than the value of the nerve cuff electrodes with IrOx ($15897{\Omega}$) and Pt ($952{\Omega}$), respectively. Furthermore, the charge delivery capacity (CDC) of the nerve cuff electrode with PEDOT:pTS was dramatically increased to 62 times than the nerve cuff electrode with IrOx. In ex-vivo test using extracted sciatic nerve of spaque-dawley rat (SD rat), the PEDOT:pTS group exhibited higher signal-to-interference ratio than IrOx group. These results indicated that the nerve cuff electrode with PEDOT:pTS is promising for effective implantable nerve signal recording.

Keywords

References

  1. J. C. Baldi, R. D. Jackson, R. Moraille, and W. J. Mysiw, "Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation", Spinal Cord, Vol. 36, pp. 463-469, 1998. https://doi.org/10.1038/sj.sc.3100679
  2. N. Hoshimiya, A. Naito, M. Yajima, and Y. Handa, "A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity", IEEE T Bio-Med Eng, Vol. 36, pp. 754-760, 1989. https://doi.org/10.1109/10.32108
  3. P. H. Peckham and J. S. Knutson, "Functional electrical stimulation for neuromuscular applications", Annu. Rev. Biomed. Eng., Vol. 7, pp. 327-360, 2005. https://doi.org/10.1146/annurev.bioeng.6.040803.140103
  4. G. H. Creasey, J. H. Grill, M. Korsten, H. Sang, R. Betz, R. Anderson, and J. Walter, "An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: A multicenter trial", Arch. Phys. Med. Rehabil., Vol. 82, pp. 1512-1519, 2001. https://doi.org/10.1053/apmr.2001.25911
  5. N. J. M. Rijkhoff, "Neuroprostheses to treat neurogenic bladder dysfunction: current status and future perspectives", Childs. Nerv. Syst., Vol. 20, pp. 75-86, 2004. https://doi.org/10.1007/s00381-003-0859-1
  6. P. E. V. Vankerrebroeck, E. L. Koldewijn, and F. M. J. Debruyne, "Worldwide Experience with the Finetech-Brindley sacral anterior root stimulator", Neurourol. Urodyn., Vol. 12, pp. 497-503, 1993. https://doi.org/10.1002/nau.1930120511
  7. R. Davis, J. Patrick, and A. Barriskill, "Development of functional electrical stimulators utilizing cochlear implant technology", Med. Eng. Phys., Vol. 23, pp. 61-68, 2001. https://doi.org/10.1016/S1350-4533(01)00023-6
  8. B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington, and W. M. Rabinowitz, "Better speech recognition with cochlear implants", Nature, Vol. 352, pp. 236-238, 1991. https://doi.org/10.1038/352236a0
  9. M. W. Kim, M. K. Kim, K. W. Seong, H. G. Lim, E. S. Jung, J. H. Han, I. Y. Park, and J. H. Cho, "Vibration characteristic analysis of differential floating mass transducer using electrical model for fully-implantable middle ear hearing devices", J. Sensor Sci. & Tech., Vol. 16, No. 3, pp. 165-173, 2007. https://doi.org/10.5369/JSST.2007.16.3.165
  10. J. Coulombe, M. Sawan, and J. F. Gervais, "A highly flexible system for microstimulation of the visual cortex: Design and implementation", IEEE Trans. Biomed. Circuits. Syst., Vol. 1, pp. 258-269, 2007. https://doi.org/10.1109/TBCAS.2007.916026
  11. J. R. Hetling and M. S. Baig-Silva, "Neural prostheses for vision: Designing a functional interface with retinal neurons", Neurol. Res., Vol. 26, pp. 21-34, 2004. https://doi.org/10.1179/016164104773026499
  12. J. R. Wolpaw and D. J. McFarland, "Control of a twodimensional movement signal by a noninvasive brain-computer interface in humans", Proc. Natl. Acad. Sci. U. S. A., Vol. 101, pp. 17849-17854, 2004. https://doi.org/10.1073/pnas.0403504101
  13. M. A. Lebedev and M. A. L. Nicolelis, "Brain-machine interfaces: Past, present, and future", Trends Neurosci., Vol. 29, pp. 536-546, 2006. https://doi.org/10.1016/j.tins.2006.07.004
  14. M. A. L. Nicolelis, "Brain-machine interfaces to restore motor function and probe neural circuits", Nat. Rev. Neurosci., Vol. 4, pp. 417-422, 2003. https://doi.org/10.1038/nrn1105
  15. M. Degrauwe, E. Vittoz, and I. Verbauwhede, "A micropower CMOS-instrumentation amplifier", IEEE J Solid-St Circ, Vol. 20, pp. 805-807, 1985. https://doi.org/10.1109/JSSC.1985.1052386
  16. R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, "A low-power integrated circuit for a wireless 100-electrode neural recording system", IEEE J Solid-St Circ, Vol. 42, pp. 123-133, 2007. https://doi.org/10.1109/JSSC.2006.886567
  17. A. L. Kip, D. U. Jeffrey, Y. Junyan, C. M. David, and R. K. Daryl, "Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film", J Neural Eng, Vol. 3, p. 59, 2006. https://doi.org/10.1088/1741-2560/3/1/007
  18. H. Yamato, M. Ohwa, and W. Wernet, "Stability of polypyrrole and poly (3, 4-ethylenedioxythiophene) for biosensor application", J. Electroanal. Chem., Vol. 397, pp.163-170, 1995. https://doi.org/10.1016/0022-0728(95)04156-8
  19. F. Beck, P. Braun, and M. Oberst, "Organic electrochemistry in the solid state-overoxidation of polypyrrole", Berich. Bunsen. Gesell., Vol. 91, pp. 967-974, 1987. https://doi.org/10.1002/bbpc.19870910927
  20. J. B. Schlenoff and H. Xu, "Evolution of physical and electrochemical properties of polypyrrole during extended oxidation", J. Electrochem. Soc., Vol. 139, pp. 2397-2401, 1992. https://doi.org/10.1149/1.2221238
  21. N. K. Guimard, N. Gomez, and C. E. Schmidt, "Conducting polymers in biomedical engineering", Prog. Polym. Sci., Vol. 32, pp. 876-921, 2007. https://doi.org/10.1016/j.progpolymsci.2007.05.012
  22. S. H. Lee, J. H. Jung, Y. M. Chae, J. K. F. Suh, and J. Y. Kang, "Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering", J. Micromech. Microeng., Vol. 20, 2010.
  23. J. U. Chu, K. I. Song, S. Han, S. H. Lee, J. Kim, J. Y. Kang, D. Hwang, J. K. Suh, K. Choi, and I. Yong, "Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems", Physiol. Meas., Vol. 33, p. 943, 2012. https://doi.org/10.1088/0967-3334/33/6/943