• Title/Summary/Keyword: Periodic Simulation

Search Result 517, Processing Time 0.031 seconds

Aperiodic Gait Control based on Periodic Gait fo Teleoperation of a Quadruped Walking Robot (4족 보행로봇의 원격조종을 위한 주기 걸음새 기반의 비주기적 걸음새 제어)

  • 최명호;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.397-397
    • /
    • 2000
  • This paper presents a gait control scheme for teleoperation of a quadruped-walking robot. In teleoperation of a walking robot, an operator gives a real-time generated velocity command to a walking robot instead of a moving trajectory. When the direction of the velocity command is changed, the periodic gait is not available because this requires an initial foot position . This paper proposes the aperiodic gait control scheme that can converge to a periodic gait Simulation results are given to demonstrate the efficiency of the proposed control scheme.

  • PDF

Speed Control Method for Reduction Speed-ripple by Periodic Load Torque of AC Motors (교류전동기의 주기적인 부하토크에 의한 속도리플을 저감하는 속도제어기법)

  • Jung, Sung-Min;Kim, Min;Choi, Jong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.409-410
    • /
    • 2012
  • Speed output has ripple such as periodic torque ripple if load torque with periodic ripple was injected in AC motor. In this paper, it is proposed method to reduce speed ripple through novel speed control method. It replaces algorithm to compensate torque ripple. Proposed method demonstrated through simulation using MATLAB SIMULINK.

  • PDF

A Study on the Time-slot Allocation Methods for the Multi-slot Calls on ATM Telephone Network (ATM 통화로 망에서의 다중호 배치방법에 대한 연구)

  • 박경태
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.73-78
    • /
    • 2004
  • There are random, continuous, and periodic allocation methods in the time slot sequence integrity for the multi-slot call. In the T-S-T switch, there are 2 time switch and the 2*2 space switch. Three time-slot allocation methods are suggested for the simulation. In the simulation, the searching times for time-slots on a multi-slot call is chosen to 32, and the simulation time is chosen to 100,000 seconds. Three kinds of calls are supposed for a multi-slot call : one time-slot call, two time-slot call, and 6 time-slot call. In the simulation, the carried traffic and the blocking probability are calculated on the 3 different traffic cases of 8:1:1, 6:2:2, 4:3:3(one time-slot : two time-slot : 6 time-slot) multi slot calls. It is shown that the blocking probability for the periodic time slot allocation method is best. As a result, the periodic time-slot allocation method is the proper one for the multi-slot ATM switch.

  • PDF

Development of the Numerical Procedures for the Control of Linear Periodic Systems (선형 주기시스템의 제어 및 수치해석적 절차 수립에 관한 연구)

  • Jo, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.121-128
    • /
    • 2000
  • The scope of this paper is focused to the systems which have the time period and they should be necessarily studied in the sense of stability and design method of controller to stabilize the orignal unstable systems. In general, the time periodic systems or the systems having same motions during certain time interval are easily found in rotating motion device, i.e., satellite or helicopter and widely used in factory automation systems. The characteristics of the selected dynamic systems are analyzed with the new stability concept and stabilization control method based on Lyapunov direct method. The new method from Lyapunov stability criteria which satisfies the energy convergence is studied with linear algebraic method. And the numerical procedures are developed with computational programming method to apply to the practical linear periodic systems. The results from this paper demonstrate the usefulness in analysis of the asymptotic stability and stabilization of the unstable linear periodic system by using the developed simulation procedures.

  • PDF

A Fast Off-line Learning Approach to the Rejection of Periodic Disturbances (주기적 외란의 제거를 위한 빠른 오프라인 학습 제어)

  • Chang, Jung-Kook;Kim, Nam-Guk;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.167-172
    • /
    • 2007
  • The recently-developed off-line learning control approaches for the rejection of periodic disturbances utilize the specific property that the learning system tends to oscillate in steady state. Unfortunately, the prior works have not clarified how closely the learning system should approach the steady state to achieve the rejection of periodic disturbances to satisfactory level. In this paper, we address this issue extensively for the class of linear systems. We also attempt to remove the effect of other aperiodic disturbances on the rejection of the periodic disturbances effectively. In fact, the proposed learning control algorithm can provide very fast convergence performance in the presence of aperiodic disturbance. The effectiveness and practicality of our work is demonstrated through mathematical performance analysis as well as various simulation results.

  • PDF

Effects of Periodic Blowing Through a Spanwise Slot on a Turbulent Boundary Layer (II) - Effects of Blowing Frequency - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (II) - 분사 주파수의 효과 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • A direct numerical simulation is performed to analyze the effects of a localized time-periodic blowing on a turbulent boundary layer flow at R $e_{+}$=300. Main emphasis is placed on the blowing frequency effect on near-wall turbulent flow structures at downstream. Wall-normal velocity on a spanwise slot is varied periodically at different frequencies (0.004$\leq$ $f^{+}$$\leq$0.080). The amplitude of periodic blowing is $A^{+}$=0.5 in wall nit, which corresponds to the value of $v_{rms}$ at $y^{+}$=15 without blowing. The frequency responses are scrutinized by examining the phase or time-averaged turbulent statistics. The optimal frequency ( $f^{+}$=0.03) is observed, where maximum increase in Reynolds shear stress, streamwise vorticity fluctuations and energy redistribution occurs. The phase-averaged stretching and tilting term are investigated to analyze the increase of streamwise vorticity fluctuations which are closely related to turbulent coherent structures. It is found that the difference between PB and SB at a high blowing frequencies is negligible.e.e.

Toward the computational rheometry of filled polymeric fluids

  • Hwang, Wook-Ryol;Hulsen Martien A.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.171-181
    • /
    • 2006
  • We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Numerical Simulation of Periodic and Oscillatory Problems by Using RK-Butcher Algorithms (RK-Butcher알고리듬의 사용에 의한 주기적 진동 문제의 수치적 시뮬레이션)

  • Park, Dae-Chul;Gopal, Devarajan;Murugesh, V.
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.82-88
    • /
    • 2008
  • In this paper, Runge-Kutta (RK)-Butcher algorithm is proposed to study the periodic and oscillatory problems. Simulation results obtained using RK-Butcher algorithms and the classical fourth order Runge-Kutta (RK(4)) methods are compared with the exact solutions of a few periodic and oscillatory problems to confirm the performance of the proposed algorithm. The simulation results from RK-Butcher algorithms are always found to be very close to the exact solutions of these problems. Further, it is found that the RK-Butcher algorithm is superior when compared to RK(4) methods in terms of accuracy. The RK-Butcher algorithm can be easily implemented in a programming language and a more accurate solution may be obtained for any length of time. RK-Butcher algorithm is applicable as a good numerical algorithm for studying the problems of orbit and two body as it gives the nearly identical solutions.

  • PDF

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

Adaptive State Feedback Control System of DC Motors with Periodic Random Disturbance (주기적 확률외란을 갖는 DC 전동기의 적응형 상태궤환 제어시스템)

  • Jeong, Sang-Chul;Kim, Jun-Su;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1036-1041
    • /
    • 2008
  • Periodic disturbance is practically occurred in several engineering applications, especially in data storage systems. However, recently addressed controls for such problem were mostly dealt with its deterministic nature, which is rarely practical in real-time implementation. We present an adaptive control approach for DC motor systems with periodic stochastic disturbance whose frequency and magnitude are both random variables. We establish adaptive state feedback control which is linearly composed of nominal and corrective control parameter matrices. The former is derived from a nominal system model voiding disturbance and the latter is constructed from a disturbed system model by using Lyapunov stability theory. We carry out computer simulation to evaluate the proposed control methodology and compare to the recently addressed control method to demonstrate its superiority.