• 제목/요약/키워드: Periodic Boundary Conditions

검색결과 123건 처리시간 0.026초

ANALYSIS OF THE PERMEABILITY CHARACTERISTICS ALONG ROUGH-WALLED FRACTURES USING A HOMOGENIZATION METHOD

  • Chae, Byung-Gon;Choi, Jung-Hae;Ichikawa, Yasuaki;Seo, Yong-Seok
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.43-52
    • /
    • 2012
  • To compute a permeability coefficient along a rough fracture that takes into account the fracture geometry, this study performed detailed measurements of fracture roughness using a confocal laser scanning microscope, a quantitative analysis of roughness using a spectral analysis, and a homogenization analysis to calculate the permeability coefficient on the microand macro-scale. The homogenization analysis is a type of perturbation theory that characterizes the behavior of microscopically inhomogeneous material with a periodic boundary condition in the microstructure. Therefore, it is possible to analyze accurate permeability characteristics that are represented by the local effect of the facture geometry. The Cpermeability coefficients that are calculated using the homogenization analysis for each rough fracture model exhibit an irregular distribution and do not follow the relationship of the cubic law. This distribution suggests that the permeability characteristics strongly depend on the geometric conditions of the fractures, such as the roughness and the aperture variation. The homogenization analysis may allow us to produce more accurate results than are possible with the preexisting equations for calculating permeability.

비대칭 엇갈림 배열로 구성된 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 특성 해석 (Analysis of Convective Heat Transfer Characteristics for the Compact Heat Exchanger with Flat Tubes and Plate Fins Having a Non-symmetric Staggered Arrangements)

  • 모정하;이상호
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.318-325
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchanger with flat tubes and continuous plate fins having a symmetric and non-symm etric staggered arrangements. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental results. In order to investigate the flow and heat transfer features by periodic boundary conditions, the three blocks were used. Predicted heat transfer coefficients between the three blocks are similar while there are relatively differences, compared with the experimental data. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Comparative study of torsional wave profiles through stratified media with fluted boundaries

  • Maity, Manisha;Kundu, Santimoy;Kumari, Alka;Gupta, Shishir
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.91-104
    • /
    • 2020
  • A mathematical analysis has been carried out for understanding the traversal attributes of torsional waves in a Voigt-type viscoelastic porous layer bounded with corrugated surfaces resting over a heterogeneous transversely isotropic gravitating semi-infinite medium. Both the media are assumed to be under the effect of initial stresses acting along horizontal directions. In the presumed geometry, continuous and periodic type of corrugation has been considered. The condensed form of dispersion relation has been obtained analytically with the aid of the Whittaker's function and suitable boundary conditions. The influence of viscoelasticity, porosity, initial stresses, heterogeneity, gravity, undulation and position parameters on the phase and damped velocities has been illustrated graphically. In addition, relative examination investigating the impact of corrugated and planar bounded surfaces on the dispersion and damping characteristics is one of the important highlights of this study.

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

유동 방향으로 기울어진 사각 핀-휜 열교환기의 유동 및 열전달 특성에 대한 수치적 연구 (A NUMERICAL STUDY ON THE FLOW AND HEAT TRANSFER CHARACTERISTICS OF A HEAT EXCHANGER HAVING RECTANGULAR PIN-FINS SLANTED IN THE FLOW DIRECTION)

  • 서준호;김민성;하만영;민준기
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.98-109
    • /
    • 2016
  • The flow and heat transfer characteristics of a heat exchanger having rectangular pin-fin in the flow direction have been investigated numerically. On the bottom plate, the convective boundary conditions for the hot side was given, and the fins were arranged in a channel-type geometric model using the periodic boundary condition in the span-wise direction. Three-dimensional numerical calculations for the flow and conjugate heat transfer problem were conducted using SIMPLE algorithm and $k-{\varepsilon}$ turbulence model. For the slanted pin-fin models, it was found that the downward cooling flow is generated due to the downward pressure gradient component, which can enhance the heat transfer performance near the bottom surface and the fin stem region. Four different inclined angles were considered in the Reynolds number range of 13,500-55,000. The aero-thermal performance of the slanted pin-fin heat exchangers, such as the volume and area goodness factors, were summarized and compared with the baseline plate-fin type heat exchanger quantitatively.

DFT Study for Adsorption and Decomposition Mechanism of Trimethylene Oxide on Al(111) Surface

  • Ye, Cai-Chao;Sun, Jie;Zhao, Feng-Qi;Xu, Si-Yu;Ju, Xue-Hai
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2013-2018
    • /
    • 2014
  • The adsorption and decomposition of trimethylene oxide ($C_3H_6O$) molecule on the Al(111) surface were investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employed a supercell ($6{\times}6{\times}3$) slab model and three-dimensional periodic boundary conditions. The strong attractive forces between $C_3H_6O$ molecule and Al atoms induce the C-O bond breaking of the ring $C_3H_6O$ molecule. Subsequently, the dissociated radical fragments of $C_3H_6O$ molecule oxidize the Al surface. The largest adsorption energy is about -260.0 kJ/mol in V3, V4 and P2, resulting a ring break at the C-O bond. We also investigated the decomposition mechanism of $C_3H_6O$ molecules on the Al(111) surface. The activation energies ($E_a$) for the dissociations V3, V4 and P2 are 133.3, 166.8 and 174.0 kJ/mol, respectively. The hcp site is the most reactive position for $C_3H_6O$ decomposing.

압전 밴드 갭 구조물의 면내·외 방향 체적 탄성파 전파 특성 해석을 위한 유한요소 모델링 (Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures)

  • 김재은;김윤영
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.957-964
    • /
    • 2011
  • 본 연구에서는 압전 밴드 갭 구조물(포논 결정) 에 대한 체적 탄성파의 전파 특성을 주파수 및 모드 별로 파악하기 위한 유한 요소법의 적용 방안을 제안하였다. 이를 위해 체적 탄성 진행파의 면내 모드 뿐만 아니라 면외 모드를 포함하도록 3 차원 주기 경계 조건을 고려하였다. 특히, 체적 탄성파 모드 간의 비연성 특성을 전기 분극 방향에 따라 유도한 다음, 그 결과를 유한 요소 모델링에 반영하였다. 제안된 방법은 실제 시뮬레이션을 통해 다양한 형태의 압전 밴드 갭 구조물의 파동 특성 분석에 적용될 수 있는 일반적이고 효율적인 방법임을 확인하였다.

한 Lennard-jones 시스템의 액체-유리-결정 전이에 관한 분자동역학 연구 (A Molecular Dynamics Study on the Liquid-Glass-Crystalline Transition of Lennard-Jones System)

  • 장현구;이종길;김순광
    • 한국재료학회지
    • /
    • 제8권8호
    • /
    • pp.678-684
    • /
    • 1998
  • 정압분자동역학 시뮬레이션에 의하여 주기경계조건을 지닌 L-J 입자들로 구성된 계의 액체-유리-결정 전이를 연구하였다. 원자체적과 엔탈피는 가열 및 냉각과정에서 온도의 함수로 계산되었다. 반경분포함수로부터 유도된 Wendt-Abraham비와 단거리규칙도를 나타내는 각도분포함수를 분석하여 액체, 유리 및 결정상태를 구분하였다. 초기 fcc 결정을 가열하여 얻은 액체상은 급냉시에 비정질화하나 서냉시엔 결정화하였다. 급냉으로 생긴 유리는 다시 서서히 가열하면 fcc로 결정화하였다. 자유표면을 지닌결정은 표면에서부터 용해가 시작되어 벌크에 비하여 낮은 온도에서 녹고 냉각시에는 빠른 냉각속도에서도 결정화가 쉽게 일어나는 경향을 보였다.

  • PDF

탄소/페놀 8-매 주자직 복합재료의 3차원 열기계적 등가물성치에 관한 연구 (Measurement and Prediction of 3-Dimensional Thermo-Mechanical Propertoes of Carbon-phenolic 8-harness Satin Weave Composites)

  • 우경식;김필종;윤광준;구남서
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.41-52
    • /
    • 2003
  • 본 연구에서는 탄소/페놀 8-매 주자직 복합재료의 기하학적 매개변수를 고려하여 3차원 열적 및 기계적 등가물성치를 예측하였다. 등가탄성계수와 열팽창계수는 일축인장하중과 순수전단, 가상의 온도변화 등을 수치적으로 모사하는 수치실험을 통하여 계산하였다. 8-매주자직 복합재료의 미세구조는 마크로요소를 통하여 모델링 하였고 단위구조해석을 위해 주기경계조건을 유도하였다. 또한 다양한 층간 위상차를 고려하기 위해 모작위 표본 해석을 수행한 후 그 결과에 대하여 통계처리를 수행하였고, 해석결과는 인접층간 위상차와 적층수 및 굴곡도 등의 매개변수가 등가물성치에 미치는 영향의 관점에서 조사되었다. 그리고 시편에 대한 실험을 실시하여 계산결과와 비교하였다.