• Title/Summary/Keyword: Peri-implant bone stress

Search Result 13, Processing Time 0.029 seconds

A two-short-implant-supported molar restoration in atrophic posterior maxilla: A finite element analysis

  • Song, Ho-Yong;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.304-312
    • /
    • 2016
  • PURPOSE. The aim of this study was to investigate the stress distribution of 2-short implants (2SIs) installed in a severely atrophic maxillary molar site. MATERIALS AND METHODS. Three different diameters of internal connection implants were modeled: narrow platform (NP), regular platform (RP), and wide platform (WP). The maxillary first molars were restored with one implant or two short implants. Three 2SI models (NP-oblique, NP-vertical, and NP-horizontal) and four single implant models (RP and WP in a centered or cantilevered position) were used. Axial and oblique loadings were applied on the occlusal surface of the crown. The von Mises stress values were measured at the bone-implant, peri-implant bone, and implant/abutment complex. RESULTS. The highest stress distribution at the bone-implant interface and the peri-implant bone was noticed in the RP group, and the lowest stress distribution was observed in the 2SI groups. Cantilevered position showed unfavorable stress distribution with axial loading. 2SI types did not affect the stress distribution in oblique loading. The number and installation positions of the implant, rather than the bone level, influenced the stress distribution of 2SIs. The implant/abutment complex of WP presented the highest stress concentration while that of 2SIs showed the lowest stress concentration. CONCLUSION. 2SIs may be useful for achieving stable stress distribution on the surrounding bone and implant-abutment complex in the atrophic posterior maxilla.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE EFFECT OF CORTICAL ENGAGEMENT ON IMPLANT LOAD TRANSFER IN POSTERIOR MANDIBLE (하악구치부 피질골 engagement가 임플란트 하중전달에 미치는 영향에 관한 3차원 유한요소법적 응력분석)

  • Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.607-619
    • /
    • 1999
  • Cortical support is an important factor, as the engagement of the fixture in strong compact bone offers an increased load-carrying capacity and initial stability. Because of the poor bone quality in the posterior mandible and other anatomic considerations, it has been suggested that implant fixtures be placed in these locations with apical engagement of the lingual cortical plate for so-called bicortication. The purpose of this investigation was to determine the effect of cortical engagements and in addition polyoxymethylene(POM) intramobile connector(IMC) of IMZ implant on implant load transfer in edentulous posterior segment of mandible, using three-dimensional (3D) finite element analysis models composed of cortical and trabecular bone involving single implant. Variables such as (1) the crestal peri-implant defect, (2) the apical engagement of lingual cortical plate, (3) the occlusal contact position (a vertical load at central fossa or buccal cusp tip), and (4) POM IMC were investigated. Stress patterns were compared and interfacial stresses along the bone-implant interface were monitored specially. Within the scope of this study, the following observations were made. 1) Offset load and angulation of fixture led to increase the local interfacial stresses. 2) Stresses were concentrated toward the cortical bones, but the crestal peri-implant defect increased the interfacial stresses in trabecular bone. 3) For the model with bicortication, it was noticed that the crestal cortical bone provided more resistance to the bending moment and the lingual cortical plate provided more support for the vertical load. But Angulation problem of the fixture from the lingual cortical engagement caused the local interfacial stress concentrations. 4) It was not clear that POM IMC had the effect on stress distribution under the present experimental conditions, especially for the cases of crestal peri-implant defect.

  • PDF

THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO THE DIFFERENT FIXTURE LOCATIONS AND ANGULATIONS (임플랜트 지지 보철물에서 고정체의 식립위치와 각도에 따른 삼차원 유한요소법적 응력분석에 관한 연구)

  • Park Won-Hee;Lee Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.61-77
    • /
    • 2005
  • Statement of problem. The implant prosthesis has been utilized in various clinical cases thanks to its increase in scientific effective application. The relevant implant therapy should have the high success rate in osseointegration, and the implant prosthesis should last for a long period of time without failure. Resorption of the peri-implant alveolar bone is the most frequent and serious problem in implant prosthesis. Excessive concentration of stress from the occlusal force and biopressure around the implant has been known to be the main cause of the bone destruction. Therefore, to decide the location and angulation of the implant is one of the major considering factors for the stress around the implant fixture to be dispersed in the limit of bio-capacity of load support for the successful and long-lasting clinical result. Yet, the detailed mechanism of this phenomenon is not well understood. To some extent, this is related to the paucity of basic science research. Purpose. The purpose of this study is to perform the stress analysis of the implant prosthesis in the partially edentulous mandible according to the different nature locations and angulations using three dimensional finite element method. Material and methods, Three 3.75mm standard implants were placed in the area of first and second bicuspids, and first molar in the mandible Thereafter, implant prostheses were fabricated using UCLA abutments. Five experimental groups were designed as follows : 1) straight placement of three implants, 2) 5$^{\circ}$ buccal and lingual angulation of straightly aligned three implants, 3) 10$^{\circ}$ buccal and lingual angulation of straightly aligned three implants. 4) lingual offset placement of three implants, and 5) buccal offset placement of three implants. Average occlusal force with a variation of perpendicular and 30$^{\circ}$ angulation was applied on the buccal cusp of each implant prosthesis, followed by the measurement of alteration and amount of stress on each configurational implant part and peri-implant bio-structures. The results of this study are extracted from the comparison between the distribution of Von mises stress and the maximum Von mises stress using three dimensional finite element stress analysis for each experimental group. Conclusion. The conclusions were as follows : 1. Providing angulations of the fixture did not help in stress dispersion in the restoration of partially edentulous mandible. 2. It is beneficial to place the fixture in a straight vertical direction, since bio-pressure in the peri-implant bone increases when the fixture is implanted in an angle. 3. It is important to select an appropriate prosthodontic material that prevents fractures, since the bio-pressure is concentrated on the prosthodontic structures when the fixture is implanted in an angle. 4. Offset placement of the fixtures is effective in stress dispersion in the restoration of partially edentulous mandible.

FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants

  • Kong, Yoon Soo;Park, Jun Woo;Choi, Dong Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.9.1-9.9
    • /
    • 2016
  • Background: As dental implants receive masticatory stress, the distribution of stress is very important to peri-implant bone homeostasis and implant survival. In this report, we created a saddle-type implant and analyzed its stability and ability to distribute stress to the surrounding bone. Methods: The implants were designed as a saddle-type implant (SI) that wrapped around the alveolar bone, and the sizes of the saddles were 2.5, 3.5, 4.5, and 5.5 mm. The X and Y displacement were compared to clarify the effects of the saddle structures. The control group consisted of dental implants without the saddle design (CI). Using finite element modeling (FEM), the stress distribution around the dental implants was analyzed. Results: With saddle-type implants, saddles longer than 4.5 mm were more effective for stress distribution than CI. Regarding lateral displacement, a SI of 2.5 mm was effective for stress distribution compared to lateral displacement. ASI that was 5.6 mm in length was more effective for stress distribution than a CI that was 10 mm in length. Conclusions: The saddle-type implant could have a bone-gaining effect. Because it has stress-distributing effects, it might protect the newly formed bone under the implant.

Comparative evaluation of peri-implant stress distribution in implant protected occlusion and cuspally loaded occlusion on a 3 unit implant supported fixed partial denture: A 3D finite element analysis study

  • Acharya, Paramba Hitendrabhai;Patel, Vilas Valjibhai;Duseja, Sareen Subhash;Chauhan, Vishal Rajendrabhai
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.79-88
    • /
    • 2021
  • Purpose. To assess peri-implant stress distribution using finite element analysis in implant supported fixed partial denture with occlusal schemes of cuspally loaded occlusion and implant protected occlusion. Materials and methods. A 3-D finite element model of mandible with D2 bone with partially edentulism with unilateral distal extension was made. Two Ti alloy identical implants with 4.2 mm diameter and 10 mm length were placed in the mandibular second premolar and the mandibular second molar region and prosthesis was given with the mandibular first molar pontic. Vertical load of 100 N and and oblique load of 70 N was applied on occlusal surface of prosthesis. Group 1 was cuspally loaded occlusion with total 8 contact points and Group 2 was implant protected occlusion with 3 contact points. Results. In Group 1 for vertical load, maximum stress was generated over implant having 14.3552 Mpa. While for oblique load, overall stress generated was 28.0732 Mpa. In Group 2 for vertical load, maximum stress was generated over crown and overall stress was 16.7682 Mpa. But for oblique load, crown stress and overall stress was maximum 22.7561 Mpa. When Group 1 is compared to Group 2, harmful oblique load caused maximum overall stress 28.0732 Mpa in Group 1. Conclusion. In Group 1, vertical load generated high implant stress, and oblique load generated high overall stresses, cortical stresses and crown stresses compared to vertical load. In Group 2, oblique load generated more overall stresses, cortical stresses, and crown stresses compared to vertical load. Implant protected occlusion generated lesser harmful oblique implant, crown, bone and overall stresses compared to cuspally loaded occlusion.

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

FINITE ELEMENT ANALYSIS OF FIN-TYPE IMPLANT FIXTURES (Fin type 임플랜트 고정체의 유한요소법적 분석)

  • Kim, Su-Gwan;Chon, Chang-Gil;Hwang, Gab-Woon;Kim, Byung-Ock
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.1
    • /
    • pp.14-25
    • /
    • 2003
  • The purpose of this study was to analyze the stress pattern in different bone densities surrounding fin-type implant fixtures under the vertical and inclined loads ($30^{\circ}) of 200N. Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the loads were calculated by using the finite element method. Four different types of bicon implant fixture were used for this study. The geometries of implant fixtures to develop the model were used by a sales brochure and profile project. Three-dimensional finite element model of the mandible was developed with 6.0 mm implant in diameter wurrounded by approximately 2.5 mm of bone. Bone densities were classified according to the elastic modulus of the tree. The finite element program MSC PATRAN (MSC, Software Corp., USA) were used for analysis of stress distribution. The value of the Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the vertical and inclined loads were decreased when the diameter of implant fixture was increased, and increased when the elastic modulus was decreased. The stress on implant fixture under the vertical and inclined loads was distributed through the length of implant fixtures in D3 and D4. The distribution of stress was influenced by the direction of loads. In the wide diameter of implants, the stress was developed at outer surface of bone. In conclusion, this study suggest that stress developing on the peri-implant tissues might be influenced by the dimension of implant, elastic modulus of bone, and direction of loads.

Changes in the fractal dimension of peri-implant trabecular bone after loading: a retrospective study

  • Mu, Teh-Jing;Lee, Dong-Won;Park, Kwang-Ho;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • Purpose: To assess bony trabecular changes potentially caused by loading stress around dental implants using fractal dimension analysis. Methods: Fractal dimensions were measured in 48 subjects by comparing radiographs taken immediately after prosthesis delivery with those taken 1 year after functional loading. Regions of interest were isolated, and fractal analysis was performed using the box-counting method with Image J 1.42 software. Wilcoxon signed-rank test was used to analyze the difference in fractal dimension before and after implant loading. Results: The mean fractal dimension before loading ($1.4213{\pm}0.0525$) increased significantly to $1.4329{\pm}0.0479$ at 12 months after loading (P<0.05). Conclusions: Fractal dimension analysis might be helpful in detecting changes in peri-implant alveolar trabecular bone patterns in clinical situations.

Effect of attachments and palatal coverage of maxillary implant overdenture on stress distribution: a finite element analysis (상악 임플란트 피개의치에서 유지장치 종류와 구개 피개 유무에 따른 응력분포에 대한 유한요소분석)

  • Park, Jong-Hee;Wang, Yuan-Kun;Lee, Jeong-Jin;Park, Yeon-Hee;Seo, Jae-Min;Kim, Kyoung-A
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effect of attachments and palatal coverage on stress distribution in maxillary implant overdenture using finite element analysis. Materials and Methods: Four maxillary overdenture 3-D models with four implants placed in the anterior region were fabricated with computer-aided design. 1) Ball-F: Non-splinted ball attachment and full palatal coverage, 2) Ball-P: Non-splinted ball attachment and U-shaped partial palatal coverage, 3) Bar-F: Splinted milled bar attachment and full palatal coverage, 4) Bar-P: Splinted milled bar attachment and U-shaped partial palatal coverage. Stress distribution analysis was performed with ANSYS workbench 14. 100 N vertical load was applied at the right first molar unilaterally and maximum stress was calculated at the implant, peri-implant bone and mucosa. Results: The use of the ball attachment showed lower maximum stress on implant and peri-implant bone than the use of the milled bar attachment. But it showed contrary tendency in the mucosa. Regardless of attachment, full palatal coverage showed lower maximum stress on implant, peri-implant bone and mucosa. Conclusion: Within the limitation of this study, ball attachment improved stress distribution on implant and peri-implant bone rather than milled bar attachment in maxillary implant overdenture. Also, full palatal coverage is more favorable in stress distribution.

Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant (임플란트 경부형상이 주위골 응력에 미치는 영향에 관한 유한요소법적 분석)

  • Chung, Jae-Min;Jo, Kwang-Heon;Lee, Cheong-Hee;Yu, Won-Jae;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.394-405
    • /
    • 2009
  • Statement of problem: Crestal bone loss, a common problem associated with dental implant, has been attributed to excessive bone stresses. Design of implant's transgingival (TG) part may affect the crestal bone stresses. Purpose: To investigate if concavely designed geometry at a dental implant's TG part reduces peri-implant bone stresses. Material and methods: A total of five differently configured TG parts were compared. Base model was the ITI one piece implant (Straumann, Waldenburg, Switzerland) characterized by straight TG part. Other 4 experimental models, i.e. Model-1 to Model-4, were designed to have concave TG part. Finite element analyses were carried out using an axisymmetric assumption. A vertical load of 50 N or an oblique load of 50 N acting at $30^{\circ}$ with the implant's long axis was applied. For a systematic stress comparison, a total of 19 reference points were defined on nodal points around the implant. The peak crestal bone stress acting at the intersection of implant and crestal bone was estimated using regression analysis from the stress results obtained at 5 reference points defined along the mid plane of the crestal bone. Results: Base Model with straight configuration at the transgingival part created highest stresses on the crestal bone. Stress level was reduced when concavity was imposed. The greater the concavity and the closer the concavity to the crestal bone level, the less the crestal stresses. Conclusion: The transgingival part of dental implant affect the crestal bone stress. And that concavely designed one may be used to reduce bone stress.