• 제목/요약/키워드: Performance predicting system

검색결과 489건 처리시간 0.034초

SW Program Development of a Real-Time Flight Data Acquisition and Analysis System for EO/IR Pod

  • Kim, Songhyon;Cho, Donghyurn;Lee, Sanghyun;Kim, Jongbum;Choi, Taekyu;Lee, Seungha
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.42-49
    • /
    • 2021
  • To develop a high-resolution electro-optical/infrared (EO/IR) payload to be mounted on a high-speed and performance fighter aircraft in an external POD for acquiring daytime and nighttime image information on tactical targets, simulations, including flight environments and maneuvers, should be performed. Such simulations are pertinent to predicting the performance of several variables, such as aerodynamic force and inertia load acting on the payload. This paper describes the development of a flight data acquisition and analysis system based on flight simulation software (SW) for mission simulation of super-maneuverability fighter equipped with EO/IR payload. The effectiveness of the system is verified through comparison with actual flight data. The proposed flight data acquisition and analysis system based on FlightGear can be used as an M&S tool for system performance analysis in the development of the EO/IR payload.

다단축류압축기의 공력성능 예측기법 개발 및 적용연구 (Aerodynamic Performance Prediction of Multistage Axial-Flow Compressors with Its Applications)

  • 정희택;박창희
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.54-59
    • /
    • 1999
  • The purpose of the present study was to develop the numerical method for predicting the on-design and off-design performance of multistage axial-flow compressors. The aerodynamic properties in blade rows were analyzed by incorporating the streamline curvature method as a quasi 3D analysis with the imperical modeling of exit flow angle and loss coefficients. The present calculation procedure has been tested by applying to 5-stage compressors and good agreement with experiments has been found. The detail analysis of aerodynamic performances has been done on the compression part of the bench-scaled gas turbine engines. The predicted performance map at the variable speedline and flow rates could be used as a guide of the engine operation.

  • PDF

일반화된 오리피스의 유량예측 상관식 및 유량선도 (A Generalized Flow Model and Flow Charts for Predicting Mass Flow Rate through Short Tube Orifices)

  • 최종민;김용찬;곽재수;권병철
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.895-900
    • /
    • 2004
  • With the phaseout of CFC and HCFC refrigerants, refrigeration and heat pump systems must be redesigned to match and improve system performance with alternative refrigerants. A generalized flow model for predicting mass flow rate through short tube orifices is derived from a power law form of dimensionless parameters generated by Pi-theorem. The database for developing the correlation includes extensive experimental data for R12, R22, R134a, R407C, R410A, and R502 from the open literature. The correlation yields an average deviation of $0.3\%$ and a standard deviation of $6.1\%$ based on the present database. In addition, rating charts for predicting refrigerant flow rate through short tube orifices are generated for R12, R22, R134a, R407C, R410A, and R502.

Predicting CEFR Levels in L2 Oral Speech, Based on Lexical and Syntactic Complexity

  • Hu, Xiaolin
    • 아시아태평양코퍼스연구
    • /
    • 제2권1호
    • /
    • pp.35-45
    • /
    • 2021
  • With the wide spread of the Common European Framework of Reference (CEFR) scales, many studies attempt to apply them in routine teaching and rater training, while more evidence regarding criterial features at different CEFR levels are still urgently needed. The current study aims to explore complexity features that distinguish and predict CEFR proficiency levels in oral performance. Using a quantitative/corpus-based approach, this research analyzed lexical and syntactic complexity features over 80 transcriptions (includes A1, A2, B1 CEFR levels, and native speakers), based on an interview test, Standard Speaking Test (SST). ANOVA and correlation analysis were conducted to exclude insignificant complexity indices before the discriminant analysis. In the result, distinctive differences in complexity between CEFR speaking levels were observed, and with a combination of six major complexity features as predictors, 78.8% of the oral transcriptions were classified into the appropriate CEFR proficiency levels. It further confirms the possibility of predicting CEFR level of L2 learners based on their objective linguistic features. This study can be helpful as an empirical reference in language pedagogy, especially for L2 learners' self-assessment and teachers' prediction of students' proficiency levels. Also, it offers implications for the validation of the rating criteria, and improvement of rating system.

Neuro-Fuzzy System for Predicting Optimal Weld Parameters of Horizontal Fillet welds

  • Moon, H.S.;Na, S.J.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.36-44
    • /
    • 2001
  • To get the appropriate welding process variables, mathematical modeling in conjunction with many experiments is necessary to predict the magnitude of weld bead shape. Even though the experimental results are reliable, it has a difficulty in accurately predicting welding process variables for the desired weld bead shape because of nonlinear and complex characteristics of welding processes. The welding condition determined for the desired weld bead shape may cause the weld defect if the welding current/voltage/speed combination is improperly selected. In this study, the $2^{n-1}$ fractional factorial design method and correlation parameter were used to investigate the effect of the welding process variables on the fillet joint shape, and the multiple non-linear regression analysis was used for modeling the gas metal arc welding(GMAW)parameters of the fillet joint. Finally, a fuzzy rule-based method and a neural network method were proposed so that the complexity and non-linearity of arc welding phenomena could be effectively overcome. The performance of the proposed neuro-fuzzy system was evaluated through various experiments. The experimental results showed that the proposed neuro-fuzzy system could effectively check the welding conditions as to whether or not weld defects would occur, and also adjust the welding conditions to avoid these weld defects.

  • PDF

자기부상 열차 동특성 예측을 위한 해석 모델 개발 (Development of Simulation Model for Predicting Dynamic Behavior of Maglev Train)

  • 김지웅;박길배;이강운;우관제
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2585-2593
    • /
    • 2011
  • Maglev train system has been continuously received attention as it provides good ride quality and low noise and vibration level. Furthermore it is an eco-friendly transport system with little dust pollutant. However the dynamic performance of the vehicle has been influenced by the track layout and the structural stability of guideways and girders, etc. Especially the levitation control of magnetic module is the most important performance of the Maglev system and is very sensitive about the control algorithm and the parameters of the controller. In this paper, the co-simulation of the control and dynamic model has been proposed and the simulation results for the running simulation on the curve track has been shown.

  • PDF

Development of a Simulator of a Magnetic Suspension and Balance System

  • Lee, Dong-Kyu;Lee, Jun-Seong;Han, Jae-Hung;Kawamura, Yoshiyuki;Chung, Sang-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.175-183
    • /
    • 2010
  • The increased demand for a higher performing magnetic suspension and balance system (MSBS) resulted in an increase in costs for the efforts necessary for achieving an improved MSBS. Therefore, MSBS performance should be predicted during the design in order to reduce risk. This paper presents the modeling and simulation of an MSBS that controls 6-degree of freedom (DOF) of an aerodynamic body within the MSBS. Permanent magnets and electromagnets were modeled as coils, and this assumption was verified by experimental results. Finally, an MSBS simulator was developed, predicting that the MSBS is able to contain the model within a bounded region as well as measure external forces acting on the body during wind tunnel tests.

복합구조물에 대한 비선형 직접스펙트럼법의 적용 (The Application of a Nonlinear Direct Spectrum Method for Mixed Building Structure)

  • 강병두;박진화;전대한;김재웅
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.258-265
    • /
    • 2002
  • Most structures are expected deform nonlinear and inelastic behavior when subjected to strong ground motion. Nonlinear time history analysis(NTHA) is the most rigorous procedure to compute seismic performance in the various inelastic analysis methods. But nonlinear analysis procedures necessitate more reliable and practical tools for predicting seismic behavior of structures. Some building codes propose the capacity spectrum method. This method is the concept of an equivalent linear system, wherein a linear system having reduced stiffness and increased damping is used to estimate the response of the nonlinear system. This procedure are conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for mixed building structure.

  • PDF

에너지 흐름 분석을 이용한 2.0L 급 하이브리드 차량에서의 LPDi 시스템 적용 효과 연구 (A Study on the Effects of LPDi System Application in 2.0L Hybrid Vehicles Using Energy Flow Analysis)

  • 안영국;구본석;박진일
    • 한국분무공학회지
    • /
    • 제29권1호
    • /
    • pp.7-15
    • /
    • 2024
  • This study investigates the performance of 2.0L hybrid vehicles equipped with Liquefied Petroleum Gas (LPG) fuel engines, using energy flow analysis. By incorporating a direct LPG injection system (LPDi), the research aims to overcome the reduced maximum output commonly associated with LPG engines. Moreover, the integration of a hybrid system is explored as a means to enhance vehicle fuel economy while reducing CO2 and emissions. The study employs data from FTP-75 and HWFET driving cycle to inform future research efforts focused on predicting CO2 emissions and fuel economy for Hybrid Electric Vehicles utilizing LPG Direct Injection. The findings offer insights into optimizing fuel systems for better environmental and operational performance in hybrid vehicles.

고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발 (Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells)

  • 한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.