• Title/Summary/Keyword: Performance degree

Search Result 3,644, Processing Time 0.027 seconds

Machine learning-based Fine Dust Prediction Model using Meteorological data and Fine Dust data (기상 데이터와 미세먼지 데이터를 활용한 머신러닝 기반 미세먼지 예측 모형)

  • KIM, Hye-Lim;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.92-111
    • /
    • 2021
  • As fine dust negatively affects disease, industry and economy, the people are sensitive to fine dust. Therefore, if the occurrence of fine dust can be predicted, countermeasures can be prepared in advance, which can be helpful for life and economy. Fine dust is affected by the weather and the degree of concentration of fine dust emission sources. The industrial sector has the largest amount of fine dust emissions, and in industrial complexes, factories emit a lot of fine dust as fine dust emission sources. This study targets regions with old industrial complexes in local cities. The purpose of this study is to explore the factors that cause fine dust and develop a predictive model that can predict the occurrence of fine dust. weather data and fine dust data were used, and variables that influence the generation of fine dust were extracted through multiple regression analysis. Based on the results of multiple regression analysis, a model with high predictive power was extracted by learning with a machine learning regression learner model. The performance of the model was confirmed using test data. As a result, the models with high predictive power were linear regression model, Gaussian process regression model, and support vector machine. The proportion of training data and predictive power were not proportional. In addition, the average value of the difference between the predicted value and the measured value was not large, but when the measured value was high, the predictive power was decreased. The results of this study can be developed as a more systematic and precise fine dust prediction service by combining meteorological data and urban big data through local government data hubs. Lastly, it will be an opportunity to promote the development of smart industrial complexes.

Technical Survey on the Real Time Eye-tracking Pointing Device as a Smart Medical Equipment (실시간 시선 추적기반 스마트 의료기기 고찰)

  • Park, Junghoon;Yim, Kangbin
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2021
  • The eye tracking system designed in this paper is an eye-based computer input device designed to give an easy access for those who are uncomfortable with Lou Gehrig's or various muscle-related diseases. It is an eye-based-computer-using device for users whose potential demand alone amounts to 30,000. Combining the number of Lou Gehrig's patients in Korea estimated at around 1,700, and those who are unable to move their bodies due to various accidents or diseases. Because these eye input devices are intended for a small group of users, many types of commercial devices are available on the market. It is making them more expensive and difficult to use for these potential users, less accessible. For this reason, each individual's economic situation and individual experience with smart devices are slightly different. Therefore, making it difficult to access them in terms of cost or usability to use a commercial eye tracking system. Accordingly, attempts to improve accessibility to IT devices through low-cost but easy-to-use technologies are essential. Thus, this paper proposes a complementary superior performance eye tracking system that can be conveniently used by far more people and patients by improving the deficiencies of the existing system. Through voluntary VoCs(Voice of Customers) of users who have used different kinds of eye tracking systems that satisfies it through various usability tests, and we propose a reduced system that the amount of calculation to 1/15th, and eye-gaze tracking error rate to 0.5~1 degree under.

A ScanSAR Processing without Azimuth Stitching by Time-domain Cross-correlation (Azimuth Stitching 없는 ScanSAR 영상화: 시간영역 교차상관)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.251-263
    • /
    • 2022
  • This paper presents an idea of ScanSAR image formation. For image formation of ScanSAR that utilizes the burst mode for raw signal acquisition, most conventional single burst methods essentially require a step of azimuth stitching which contributes to radiometric and phase distortions to some extent. Time-domain cross correlation could replace SPECAN which is most popularly used for ScanSAR processing. The core idea of the proposed method is that it is possible to relieve the necessity of azimuth stitching by an extension of Doppler bandwidth of the reference function to the burst cycle period. Performance of the proposed method was evaluated by applying it to the raw signals acquired by a spaceborne SAR system, and results satisfied all image quality requirements including 3 dB width, peak-to-sidelobe ratio (PSLR), compression ratio,speckle noise, etc. Image quality of ScanSAR is inferior to that of Stripmap in all aspects. However, it is also possible to improve the quality of ScanSAR image competitive to that of Stripmap if focused on a certain parameter while reduced qualities of other parameters. Thus, it is necessary for a ScanSAR processor to offer a great degree of flexibility complying with different requirements for different applications and techniques.

Development of an abnormal road object recognition model based on deep learning (딥러닝 기반 불량노면 객체 인식 모델 개발)

  • Choi, Mi-Hyeong;Woo, Je-Seung;Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.149-155
    • /
    • 2021
  • In this study, we intend to develop a defective road surface object recognition model that automatically detects road surface defects that restrict the movement of the transportation handicapped using electric mobile devices with deep learning. For this purpose, road surface information was collected from the pedestrian and running routes where the electric mobility aid device is expected to move in five areas within the city of Busan. For data, images were collected by dividing the road surface and surroundings into objects constituting the surroundings. A series of recognition items such as the detection of breakage levels of sidewalk blocks were defined by classifying according to the degree of impeding the movement of the transportation handicapped in traffic from the collected data. A road surface object recognition deep learning model was implemented. In the final stage of the study, the performance verification process of a deep learning model that automatically detects defective road surface objects through model learning and validation after processing, refining, and annotation of image data separated and collected in units of objects through actual driving. proceeded.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Quality Evaluation of Drone Image using Siemens star (Siemens star를 이용한 드론 영상의 품질 평가)

  • Lee, Jae One;Sung, Sang Min;Back, Ki Suk;Yun, Bu Yeol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.217-226
    • /
    • 2022
  • In the view of the application of high-precision spatial information production, UAV (Umanned Aerial Vehicle)-Photogrammetry has a problem in that it lacks specific procedures and detailed regulations for quantitative quality verification methods or certification of captured images. In addition, test tools for UAV image quality assessment use only the GSD (Ground Sample Distance), not MTF (Modulation Transfer Function), which reflects image resolution and contrast at the same time. This fact makes often the quality of UAV image inferior to that of manned aerial image. We performed MTF and GSD analysis simultaneously using a siemens star to confirm the necessity of MTF analysis in UAV image quality assessment. The analyzing results of UAV images taken with different payload and sensors show that there is a big difference in σMTF values, representing image resolution and the degree of contrast, but slightly different in GSD. It concluded that the MTF analysis is a more objective and reliable analysis method than just the GSD analysis method, and high-quality drone images can only be obtained when the operator make images after judging the proper selection the sensor performance, image overlaps, and payload type. However, the results of this study are derived from analyzing only images acquired by limited sensors and imaging conditions. It is therefore expected that more objective and reliable results will be obtained if continuous research is conducted by accumulating various experimental data in related fields in the future.

A Study on the Analysis of the Congestion Level of Tourist Sites and Visitors Characteristics Using SNS Data (SNS 데이터를 활용한 관광지 혼잡도 및 방문자 특성 분석에 관한 연구)

  • Lee, Sang Hoon;Kim, Su-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.13-24
    • /
    • 2022
  • SNS has become a very close service to our daily life. As marketing is done through SNS, places often called hot places are created, and users are flocking to these places. However, it is often crowded with a large number of people in a short period of time, resulting in a negative experience for both visitors and service providers. In order to improve this problem, it is necessary to recognize the congestion level, but the method to determine the congestion level in a specific area at an individual level is very limited. Therefore, in this study, we tried to propose a system that can identify the congestion level information and the characteristics of visitors to a specific tourist destination by using the data on the SNS. For this purpose, posting data uploaded by users and image analysis were used, and the performance of the proposed system was verified using the Naver DataLab system. As a result of comparative verification by selecting three places by type of tourist destination, the results calculated in this study and the congestion level provided by DataLab were found to be similar. In particular, this study is meaningful in that it provides a degree of congestion based on real data of users that is not dependent on a specific company or service.

A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates (위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안)

  • Jang, Sungmin;Iee, Jeongwoo;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.57-74
    • /
    • 2022
  • Recently, artificial intelligence parking control systems have increased the recognition rate of vehicle license plates using deep learning, but there is a problem that they cannot determine vehicles with fake license plates. Despite these security problems, several institutions have been using the existing system so far. For example, in an experiment using a counterfeit license plate, there are cases of successful entry into major government agencies. This paper proposes an improved system over the existing artificial intelligence parking control system to prevent vehicles with such fake license plates from entering. The proposed method is to use the degree of matching of the front feature points of the vehicle as a passing criterion using the ORB algorithm that extracts information on feature points characterized by an image, just as the existing system uses the matching of vehicle license plates as a passing criterion. In addition, a procedure for checking whether a vehicle exists inside was included in the proposed system to prevent the entry of the same type of vehicle with a fake license plate. As a result of the experiment, it showed the improved performance in identifying vehicles with fake license plates compared to the existing system. These results confirmed that the methods proposed in this paper could be applied to the existing parking control system while taking the flow of the original artificial intelligence parking control system to prevent vehicles with fake license plates from entering.

Evaluation of Applicability to Metofluthrin-based Termiticide for the Traditional Wooden Buildings (Metofluthrin계 방의제의 전통 목조건축물 적용 평가)

  • Yoon, Sae-Min;Park, Yonggun;Chung, Jinyoung;Hwang, Wonjoung
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.679-688
    • /
    • 2021
  • In this study, we investigated the applicability of a termiticide based on metofluthrin for termite control on traditional wooden buildings. To evaluate their mortality, termites were exposed to the agent, diluted to various concentrations, for seven days; it was found that it had a sufficient insecticidal effect although there was a difference depending on the degree of agent dilution. Next, the effect on Dancheong, used in traditional wooden structures, was measured based on the color change according to the number of agent treatments. The results showed that only the color difference value of two pigments (i.e., Bun and Juhong) was measured as 3.0 or higher. However, there this varied according to the dilution ratio. Thus, it was found that most pigments had little effect on the color of Dancheong. Finally, the termiticidal efficacy of the agent when applied to wood was evaluated. We found that the specimens coated with 10-fold and 20-fold dilutions exhibited 2.83 and 6.28% mass loss, respectively. The 10-fold dilution satisfied the performance of termiticide as a mass loss of less than 3%. In conclusion, the metofluthrin-based agent used in this study has little effect on various Dancheong pigments and has a termiticidal effect against termites; it is therefore suggested that it may be used in preserving traditional wooden cultural properties in Korea.

DNN Model for Calculation of UV Index at The Location of User Using Solar Object Information and Sunlight Characteristics (태양객체 정보 및 태양광 특성을 이용하여 사용자 위치의 자외선 지수를 산출하는 DNN 모델)

  • Ga, Deog-hyun;Oh, Seung-Taek;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2022
  • UV rays have beneficial or harmful effects on the human body depending on the degree of exposure. An accurate UV information is required for proper exposure to UV rays per individual. The UV rays' information is provided by the Korea Meteorological Administration as one component of daily weather information in Korea. However, it does not provide an accurate UVI at the user's location based on the region's Ultraviolet index. Some operate measuring instrument to obtain an accurate UVI, but it would be costly and inconvenient. Studies which assumed the UVI through environmental factors such as solar radiation and amount of cloud have been introduced, but those studies also could not provide service to individual. Therefore, this paper proposes a deep learning model to calculate UVI using solar object information and sunlight characteristics to provide an accurate UVI at individual location. After selecting the factors, which were considered as highly correlated with UVI such as location and size and illuminance of sun and which were obtained through the analysis of sky images and solar characteristics data, a data set for DNN model was constructed. A DNN model that calculates the UVI was finally realized by entering the solar object information and sunlight characteristics extracted through Mask R-CNN. In consideration of the domestic UVI recommendation standards, it was possible to accurately calculate UVI within the range of MAE 0.26 compared to the standard equipment in the performance evaluation for days with UVI above and below 8.