• Title/Summary/Keyword: Performance Parameter

Search Result 4,770, Processing Time 0.032 seconds

The Effect of Acoustic Velocity of Ultrasonographic Equipment Using an N-365 Multipurpose Phantom (N-365 다목적팬텀에서 초음파진단장치의 음속변화 효과)

  • Kim, Yon-Min;Shim, Jae-Goo;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.221-225
    • /
    • 2017
  • To evaluate the performance of ultrasound imaging system, we investigated the change of spatial resolution according to changing sonic velocity change parameter provided by ultrasound equipment. Ultrasound phantom images were obtained using a 3.0 ~ 5.0 MHz convex transducer in an ultrasound diagnostic device used at a medical institution located at Iksan. N-365 multi-purpose ultrasound phantom was used to measure longitudinal distance measurement accuracy and longitudinal and transverse resolution. In the same manner, the sonic velocity of the ultrasound equipment was changed from 1580 m/sec to 1400 m/sec in six steps, and the full width at half maximum(FWHM) was measured using the image J program to determine whether the measured values were different. As a result, lateral resolution was measured from 1.91 mm to 5.3 mm according to the speed change, and the smallest FWHM was 1.91 mm at 1420 m/sec. The axial resolution was measured from 1.03 mm to 1.14 mm according to the speed change, and the smallest FWHM was 1.03 mm at 1400 m/sec. The slower the sound velocity of the ultrasound equipment, the shorter the length of longitudinal measurement.

Characteristics on Chemical Activation and VOCs Adsorption of Activated Carbon according to Mixing Ratio of Anthracite and Lignite (활성탄 제조시 유·무연탄 혼합에 따른 화학적 활성화 및 휘발성유기화합물 흡착 특성)

  • Cho, Joon-Hyung;Kang, Sung-Kyu;Kang, Min-Kyoung;Cho, Kuk;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.364-377
    • /
    • 2017
  • In this study, to improve the low surface area of domestic anthracite as raw materials of activated carbon, characteristics on chemical activation and VOCs adsorption of activated carbon according to mixing ratio of anthracite and lignite. For these, properties of raw materials, parameter characteristics of preparation processes for activated carbon, and VOCs adsorption characteristic of the prepared activated carbon are analyzed. The experimental results showed that, the domestic anthracite had disadvantages of high contents for ash and lead, arsenic, which were exceeded for the heavy metal limits, in the properties of raw materials. To improve these diadvantages, using the mixing ratio of anthracite and lignite, and the optimum conditions for pretreatment, activation, washing, and pellitization process, the activated carbon had a range of BET (Brunauer-Emmett-Teller) surface area of $1,154{\sim}1,420m^2g^{-1}$ with mesopore development and hydrophobic surface property. The carbons were satisfied with the quality standard for granular activated carbon, and had similar physicochemical properties with the commercial activated carbon. The minimum mixing condition for commercial VOCs activated carbon performance must have the caloric value of above $5,640kcal\;kg^{-1}$, and the carbon had higher adsorption capacity with order of xylene > toluene > benzene according to more higher molcular weight and hydrophobic property.

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF

Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder (알칼리 활성 슬래그 결합재를 이용한 자기충전 콘크리트의 기초 연구)

  • Song, Keum-Il;Shin, Gyeong-Sik;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • The purpose of this study is the basic research of self-compacting concrete using Alkali-Activated Slag (AAS) binder in order to emphasize the durability of structures and facilitate casting the fresh concrete in field. The AAS binder emitted low carbon dioxide ($CO_2$) is eco friendly material of new concept because AAS products not only emit little $CO_2$ during production but also reuse the industrial by-products such as ground granulated blast-furnace slag (GGBS) of the steel mill. Until now, almost of domestic and foreign research are using Ordinary Portland Cement (OPC) for self-compacting concrete, and also, nonexistent research about AAS. The self-compacting concrete must get the performance of flowability, segregation resistance, filling and passing ability. Nine concrete mixes were prepared with the main parameter of unit amount of binder (400, 500, 600 $kg/m^3$) and 3 types of water-binder (W/B) ratio. The results of test were that fresh concretes were satisfied with flowability, segregation resistance, and filling ability of JSCE. But the passing ability was not meet the criteria of EFNARC because of higher viscosity of AAS paste than OPC. This high viscosity of AAS paste enables the manufacturing of self compacting concrete, segregation of which does not occur without the using of viscosity agent. It is necessary that the development of high fluidity AAS binders of higher strength and the study of better passing ability of AAS concrete mixes in order to use self compacting AAS concrete in field.

A Test for Nonlinear Causality and Its Application to Money, Production and Prices (통화(通貨)·생산(生産)·물가(物價)의 비선형인과관계(非線型因果關係) 검정(檢定))

  • Baek, Ehung-gi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.117-140
    • /
    • 1991
  • The purpose of this paper is primarily to introduce a nonparametric statistical tool developed by Baek and Brock to detect a unidirectional causal ordering between two economic variables and apply it to interesting macroeconomic relationships among money, production and prices. It can be applied to any other causal structure, for instance, defense spending and economic performance, stock market index and market interest rates etc. A key building block of the test for nonlinear Granger causality used in this paper is the correlation. The main emphasis is put on nonlinear causal structure rather than a linear one because the conventional F-test provides high power against the linear causal relationship. Based on asymptotic normality of our test statistic, the nonlinear causality test is finally derived. Size of the test is reported for some parameters. When it is applied to a money, production and prices model, some evidences of nonlinear causality are found by the corrected size of the test. For instance, nonlinear causal relationships between production and prices are demonstrated in both directions, however, these results were ignored by the conventional F-test. A similar results between money and prices are obtained at high lag variables.

  • PDF

Semi-active storey isolation system employing MRE isolator with parameter identification based on NSGA-II with DCD

  • Gu, Xiaoyu;Yu, Yang;Li, Jianchun;Li, Yancheng;Alamdari, Mehrisadat Makki
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1101-1121
    • /
    • 2016
  • Base isolation, one of the popular seismic protection approaches proven to be effective in practical applications, has been widely applied worldwide during the past few decades. As the techniques mature, it has been recognised that, the biggest issue faced in base isolation technique is the challenge of great base displacement demand, which leads to the potential of overturning of the structure, instability and permanent damage of the isolators. Meanwhile, drain, ventilation and regular maintenance at the base isolation level are quite difficult and rather time- and fund- consuming, especially in the highly populated areas. To address these challenges, a number of efforts have been dedicated to propose new isolation systems, including segmental building, additional storey isolation (ASI) and mid-storey isolation system, etc. However, such techniques have their own flaws, among which whipping effect is the most obvious one. Moreover, due to their inherent passive nature, all these techniques, including traditional base isolation system, show incapability to cope with the unpredictable and diverse nature of earthquakes. The solution for the aforementioned challenge is to develop an innovative vibration isolation system to realise variable structural stiffness to maximise the adaptability and controllability of the system. Recently, advances on the development of an adaptive magneto-rheological elastomer (MRE) vibration isolator has enlightened the development of adaptive base isolation systems due to its ability to alter stiffness by changing applied electrical current. In this study, an innovative semi-active storey isolation system inserting such novel MRE isolators between each floor is proposed. The stiffness of each level in the proposed isolation system can thus be changed according to characteristics of the MRE isolators. Non-dominated sorting genetic algorithm type II (NSGA-II) with dynamic crowding distance (DCD) is utilised for the optimisation of the parameters at isolation level in the system. Extensive comparative simulation studies have been conducted using 5-storey benchmark model to evaluate the performance of the proposed isolation system under different earthquake excitations. Simulation results compare the seismic responses of bare building, building with passive controlled MRE base isolation system, building with passive-controlled MRE storey isolation system and building with optimised storey isolation system.

Impact Factors of KS-QFD Training Participants of 3 years over Startups on Transfer Intension (창업기업 QFD 교육 훈련 프로그램의 학습 전이의도에 관한 연구)

  • Hwangbo, Yu;Yang, Young-Seok;Kim, Myung-Seuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.6
    • /
    • pp.1-12
    • /
    • 2017
  • This paper is brought to asses the training effect of KS-QFD boot camp for the companies in the early growth stage. In particular, the focus of research falls on measuring transfer intension of the participants from the early stage companies older than three years old, motivating effect of applying knowledges acquired from KS-QFD training camp into their real business case. KS-QFD program is presented to help company in the early stage companies over three years old of boosting up their sales volume more than 5 times than now for the next 18 months by this training. The training program of KS-QFD is ultimately to design more practical and helpful program to real business and spread out. The research establish model by setting the learner readiness and perceived content validity by doing training design as independent variables, self-efficacy of learner as mediating variable, and transfer intension as dependant variable. Research results shows the following outcomes. First, learner readiness does not have directly effect on transfer intension under keeping statistical significance. But as the parameter of self-efficacy, it has perfect mediating effect. Second, research proves that perceived content validity have directly impact on learning transfer intension of mediating by self-efficacy partially. This research contributes on proving that learning by doing KS-QFD boot camp enable the participants to build up their self-efficacy and lead to enhance transfer intension. In more steps, the research validates that KS-QFD training camp have delivered very practical and helpful on-site knowledge to the participants.

  • PDF

Dosimetric Validation of the Acuros XB Advanced Dose Calculation Algorithm for Volumetric Modulated Arc Therapy Plans

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.180-188
    • /
    • 2016
  • Acuros XB advanced dose calculation algorithm (AXB, Varian Medical Systems, Palo Alto, CA) has been released recently and provided the advantages of speed and accuracy for dose calculation. For clinical use, it is important to investigate the dosimetric performance of AXB compared to the calculation algorithm of the previous version, Anisotropic Analytical Algorithm (AAA, Varian Medical Systems, Palo Alto, CA). Ten volumetric modulated arc therapy (VMAT) plans for each of the following cases were included: head and neck (H&N), prostate, spine, and lung. The spine and lung cases were treated with stereotactic body radiation therapy (SBRT) technique. For all cases, the dose distributions were calculated using AAA and two dose reporting modes in AXB (dose-to-water, $AXB_w$, and dose-to-medium, $AXB_m$) with same plan parameters. For dosimetric evaluation, the dose-volumetric parameters were calculated for each planning target volume (PTV) and interested normal organs. The differences between AAA and AXB were statistically calculated with paired t-test. As a general trend, $AXB_w$ and $AXB_m$ showed dose underestimation as compared with AAA, which did not exceed within -3.5% and -4.5%, respectively. The maximum dose of PTV calculated by $AXB_w$ and $AXB_m$ was tended to be overestimated with the relative dose difference ranged from 1.6% to 4.6% for all cases. The absolute mean values of the relative dose differences were $1.1{\pm}1.2%$ and $2.0{\pm}1.2%$ when comparing between AAA and $AXB_w$, and AAA and $AXB_m$, respectively. For almost dose-volumetric parameters of PTV, the relative dose differences are statistically significant while there are no statistical significance for normal tissues. Both $AXB_w$ and $AXB_m$ was tended to underestimate dose for PTV and normal tissues compared to AAA. For analyzing two dose reporting modes in AXB, the dose distribution calculated by $AXB_w$ was similar to those of AAA when comparing the dose distributions between AAA and $AXB_m$.

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF

Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula (북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용)

  • Choi, Woosuk;Ho, Chang-Hoi;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.565-571
    • /
    • 2014
  • A long-range prediction system of tropical cyclone (TC) activity over the western North Pacific (WNP) has been operated in the National Typhoon Center of the Korea Meteorological Administration since 2012. The model forecasts the spatial distribution of TC tracks averaged over the period June~October. In this study, we separately developed TC prediction models for summer (June~August) and autumn (September~November) period based on the current operating system. To perform the three-month WNP TC activity prediction procedure readily, we modified the shell script calling in environmental variables automatically. The user can apply the model by changing these environmental variables of namelist parameter in consideration of their objective. The validations for the two seasons demonstrate the great performance of predictions showing high pattern correlations between hindcast and observed TC activity. In addition, we developed a post-processing script for deducing TC activity in the Korea emergency zone from final forecasting map and its skill is discussed.