• 제목/요약/키워드: Perfectly Plastic Material

Search Result 57, Processing Time 0.023 seconds

Failure mechanisms of a rigid-perfectly plastic cantilever with elastic deformation at its root subjected to tip pulse loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • 제2권2호
    • /
    • pp.141-156
    • /
    • 1994
  • In this paper, the effect of material elasticity was evaluated through a simple model as proposed by Wang and Yu (1991), for yield mechanisms of a cantilever beam under tip pulse loading. The beam was assumed rigid-perfectly plastic but instead of the usual fully clamped constraints at its root, an elastic-perfectly plastic rotational spring was introduced there so the system had a certain capacity to absorb elastic energy. Compared with a rigid-perfectly plastic beam without a spring root, the present beam-spring model showed differences in the initial plastic hinge position and the minimum magnitude of the dynamic force needed to produce a plastic failure. It was also shown that various failure responses may happen while the hinge travels along the beam segment towards the root, rather than a unique response mode as in a rigid perfectly plastic analysis.

멱함수 가공경화 모델을 이용한 복합실린더의 자긴가공해석 (Autofrettage Analysis of Compound Cylinder with Power Function Strain Hardening Model)

  • 박재현;이영신;심우성;김재훈;차기업;홍석균
    • 대한기계학회논문집A
    • /
    • 제32권6호
    • /
    • pp.488-495
    • /
    • 2008
  • In order to achieve long fatigue lifetimes for cyclically pressurized thick cylinders, multi-layered compound cylinder has been proposed. Such compound cylinder involves a shrink-fit procedure incorporating a monobloc tube which has previously undergone autofrettage. The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage mo dels are based on different simplified material strain-hardening models, which is assumed that combination of linear strain-hardenig and power strain-hardening model. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material was proposed. The model was obtained using the von Mises yield criterion and plane strain condition. The tensile-compressive stress-strain curve was obtained by experiment. The parameters needed in the model were determined by fitting the actual tensile-compressive curve of the material. Finally, strain- hardening model was compared with elastic-perfectly plastic model.

Plane strain bending of a bimetallic sheet at large strains

  • Alexandrov, Sergei E.;Kien, Nguyen D.;Manh, Dinh V.;Grechnikov, Fedor V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.641-659
    • /
    • 2016
  • This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The general solution is cumbersome because different analytic expressions for the radial and circumferential stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process parameters the solution to the problem consists of a sequence of rather simple analytic expressions connected by transcendental equations. The general solution is illustrated by a simple example.

Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition

  • Nadia Alavi;Mohammad Zamani Nejad;Amin Hadi;Anahita Nikeghbalyan
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.377-389
    • /
    • 2024
  • In the present study, thermoelsatoplastic stresses and displacement for rotating hollow disks made of functionally graded materials (FGMs) has been investigated. The linear elastic-fully plastic condition is considered. The material properties except Poisson's ratio are assumed to vary in the radial direction as a power-law function. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the disk. The plastic model is based on the Tresca yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is shown that the elastoplastic response of the functionally graded (FG) disk is affected notably by the radial variation of material properties. It is also shown that, depending on material properties and disk dimensions, different modes of plastic deformation may occur.

후방압출에서 펀치형상에 따른 접촉경계면의 표면부하상태 (Surface Stress Profiles at the Contact Boundary in Backward Extrusion Processes for Various Punch Shapes)

  • 노정훈;김민태;비스아라;황병복
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.565-571
    • /
    • 2009
  • This paper is concerned with the analysis on the surface stress profiles of perfectly plastic material in backward extrusion process. Due to heavy surface expansion appeared usually in the backward extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the analyses have focused to reveal the surface conditions at the contact boundary for various punch shapes in terms of surface expansion, contact pressure, and relative movement between punch and workpiece which consists of sliding velocity and distance, respectively. Punch geometries adopted in the analysis include concave, hemispherical, pointed and ICFG recommended shapes. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward extrusion process under different punch geometries. The simulation results are summarized in terms of surface expansion, contact pressure, sliding velocity and sliding distance at different reduction in height, deformation patterns, and load-stroke relationship, respectively.

Effective moment of inertia for rectangular elastoplastic beams

  • Faller, Ronald K.;Rosson, Barry T.
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.95-110
    • /
    • 1999
  • An effective moment of inertia is developed for a rectangular, prismatic elastoplastic beam with elastic, linear-hardening material behavior. The particular solution for a beam with elastic, perfectly plastic material behavior is also presented with applications for beam bending in closed-form. Equations are presented for the direct application of the virtual work method for elastoplastic beams with concentrated and distributed loads. Comparisons are made between the virtual work method deflections and the deflections obtained by using an average effective moment of inertia over two lengths of the beam in the elastoplastic region.

Effect of the yield criterion on the strain rate and plastic work rate intensity factors in axisymmetric flow

  • Lyamina, Elena A.;Nguyen, Thanh
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.719-729
    • /
    • 2016
  • The main objective of the present paper is to study the effect of the yield criterion on the magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate intensity factor does.

다공질 금속의 비탄성거동을 위한 특수 구성방정식의 형성 I (Formulation of Special Constitutive Equations for Inelastic Responses of Porous Metals (I) - Elastic, Perfectly Plastic Material -)

  • 김기태
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.975-981
    • /
    • 1987
  • 본 연구에서는 제안된 특수 구성방정식으로 부터 얻은 이론치는 Shipman등에 의해 얻어진 정수압 압축및 1축 변형율 압축상태 하의 다공질 텅스텐의 실험치와 비교 하여 아주 잘 일치하였다.

소성거동을 고려한 원주방향 관통균열 열림에 미치는 압력유기굽힘의 구속효과 평가 모델 (Evaluation Model for Restraint Effect of Pressure Induced Bending on the Circumferential Through-Wall Crack Opening Considering Plastic Behavior)

  • 김진원
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1134-1141
    • /
    • 2006
  • This paper presents the model for evaluating restraint effect of pressure induced bending (PIB) on the circumferential through-wall crack opening displacement (COD), which considers plastic behavior of crack. This study performed three-dimensional elastic-plastic finite element (FE) analyses for different crack angle, restraint length, pipe geometry, stress level, and material conditions, and evaluated the influence of each parameter on the PIB restraint effect on COD. Based on these evaluations and additional perfectly-plastic FE analyses, a closed-form model to evaluate the restraint effect of PIB on the plastic crack opening of circumferential through-wall crack, was proposed as functions of crack angle, restraint length, radius to thickness ratio, axial stress corresponding to an internal pressure, and normalized COD evaluated from linear-elastic crack opening condition.

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.