• 제목/요약/키워드: Peptide quantification

검색결과 16건 처리시간 0.02초

An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

  • Arul, Albert-Baskar;Han, Na-Young;Lee, Hookeun
    • Mass Spectrometry Letters
    • /
    • 제4권2호
    • /
    • pp.25-29
    • /
    • 2013
  • Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution) method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

Estimation and Analysis Methods for Trastuzumab Deamidation Levels Using Mass Spectrometry

  • Daebong Moon;Geonwoo Kim;Minjae Park;Sunyeol Hong;Mihyeon Nam;Sungsic Park;Jintae Hong
    • Mass Spectrometry Letters
    • /
    • 제15권2호
    • /
    • pp.107-119
    • /
    • 2024
  • We aimed to develop a suitable quantification method for detecting asparagine deamidation and aspartic acid isomerization in peptide mapping using LC-MS. Our assessment of its validity and suitability involved comparing its quantitative findings with those obtained from cation-exchange chromatography and capillary electrophoresis methods. By subjecting trastuzumab to rigorous conditions to induce these modifications, we validated the efficacy of this new analytical method in peptide mapping via LC-MS, evaluating both qualitative and quantitative aspects of asparagine deamidation and aspartic acid isomerization. Our investigation underscored the significance of enzyme selection and the presence of miss-cleaved or non-specific peptides in achieving accurate quantitative results. The experimental results demonstrated a strong correlation with results from cation-exchange chromatography and capillary electrophoresis analyses, confirming the reliability of the LC-MS based peptide mapping approach.

플로래스카민과 알파이미저를 이용한 PrP 106-126 펩타이드 정량에 관한 연구 (A Study on the Quantification of PrP 106-126 Peptide by Fluorescamine and Alpha-imager)

  • 정근홍;정우영;계영식
    • 공업화학
    • /
    • 제20권6호
    • /
    • pp.628-631
    • /
    • 2009
  • 최근 광우병 파동과 프리온 단백질의 전염으로 인하여 발생되는 것으로 알려진 크로이츠펠트 야콥병에 대하여 폭넓게 연구되면서 생화학계에서 프리온 단백질에 대한 관심은 상당하다. 본 연구에서는 프리온 단백질의 일부분인 PrP 106-126의 마이크로 몰농도 단위의 정량분석을 실시하였다. 본 연구에서 플로래스카민은 일차 아민과 반응하여 형광을 띠는 물질로써, 알파이미저는 형광의 세기를 측정하는 기기로써 사용되었다. 따라서 합성된 PrP 106-126으로 플로래스카민과 알파이미저를 이용하여 마이크로 몰농도단위의 정량 분석을 위한 조건을 정립하였으며 이를 통하여 표준곡선을 얻을 수 있었다. 이 방법은 차후 변형 프리온 단백질에 대한 응집저해제 및 의약품 연구에 큰 기여를 할 것이다.

Optimization of Enzyme Digestion Conditions for Quantification of Glycated Hemoglobin Using Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry

  • Jeong, Ji-Seon
    • Mass Spectrometry Letters
    • /
    • 제5권2호
    • /
    • pp.52-56
    • /
    • 2014
  • Glycated hemoglobin (HbA1c) is used as an index of mean glycemia over prolonged periods. This study describes an optimization of enzyme digestion conditions for quantification of non-glycated hemoglobin (HbA0) and HbA1c as diagnostic markers of diabetes mellitus. Both HbA0 and HbA1c were quantitatively determined followed by enzyme digestion using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) with synthesized N-terminal hexapeptides as standards and synthesized isotope labeled hexapeptides as internal standards. Prior to quantification, each peptide was additionally quantified by amino acid composition analysis using ID-LC-MS/MS via acid hydrolysis. Each parameter was considered strictly as a means to improve digestion efficiency and repeatability. Digestion of hemoglobin was optimized when using 100 mM ammonium acetate (pH 4.2) and a Glu-C-to-HbA1c ratio of 1:50 at $37^{\circ}C$ for 20 h. Quantification was satisfactorily reproducible with a 2.6% relative standard deviation. These conditions were recommended for a primary reference method of HbA1c quantification and for the certification of HbA1c reference material.

A Simple Carbamidomethylation-Based Isotope Labeling Method for Quantitative Shotgun Proteomics

  • Oh, Donggeun;Lee, Sun Young;Kwon, Meehyang;Kim, Sook-Kyung;Moon, Myeong Hee;Kang, Dukjin
    • Mass Spectrometry Letters
    • /
    • 제5권3호
    • /
    • pp.63-69
    • /
    • 2014
  • In this study, we present a new isotope-coded carbamidomethylation (iCCM)-based quantitative proteomics, as a complementary strategy for conventional isotope labeling strategies, with providing the simplicity, ease of use, and robustness. In iCCM-based quantification, two proteome samples can be separately isotope-labeled by means of covalently reaction of all cysteinyl residues in proteins with iodoacetamide (IAA) and its isotope (IAA-$^{13}C_2$, $D_2$), denoted as CM and iCCM, respectively, leading to a mass shift of all cysteinyl residues to be + 4 Da. To evaluate iCCM-based isotope labeling in proteomic quantification, 6 protein standards (i.e., bovine serum albumin, serotransferrin, lysozyme, beta-lactoglobulin, beta-galactosidase, and alpha-lactalbumin) isotopically labeled with IAA and its isotope, mixed equally, and followed by proteolytic digestion. The resulting CM-/iCCM-labeled peptide mixtures were analyzed using a nLC-ESI-FT orbitrap-MS/MS. From our experimental results, we found that the efficiency of iCCM-based quantification is more superior to that of mTRAQ, as a conventional nonisobaric labeling method, in which both of a number of identified peptides from 6 protein standards and the less quantitative variations in the relative abundance ratios of heavy-/light-labeled corresponding peptide pairs. Finally, we applied the developed iCCM-based quantitative method to lung cancer serum proteome in order to evaluate the potential in biomarker discovery study.

MHC Multimer: A Molecular Toolbox for Immunologists

  • Chang, Jun
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.328-334
    • /
    • 2021
  • The advent of the major histocompatibility complex (MHC) multimer technology has led to a breakthrough in the quantification and analysis of antigen-specific T cells. In particular, this technology has dramatically advanced the measurement and analysis of CD8 T cells and is being applied more widely. In addition, the scope of application of MHC multimer technology is gradually expanding to other T cells such as CD4 T cells, natural killer T cells, and mucosal-associated invariant T cells. MHC multimer technology acts by complementing the T-cell receptor-MHC/peptide complex affinity, which is relatively low compared to antigen-antibody affinity, through a multivalent interaction. The application of MHC multimer technology has expanded to include various functions such as quantification and analysis of antigen-specific T cells, cell sorting, depletion, stimulation to replace antigen-presenting cells, and single-cell classification through DNA barcodes. This review aims to provide the latest knowledge of MHC multimer technology, which is constantly evolving, broaden understanding of this technology, and promote its widespread use.

Cytokine mRNA Expression in the Small Intestine of Weanling Pigs Fed Diets Supplemented with Specialized Protein or Peptide Sources

  • Zhao, J.;Harper, A.F.;Webb, K.E. Jr.;Kuehn, L.A.;Gilbert, E.;Xiao, X.;Wong, E.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권12호
    • /
    • pp.1800-1806
    • /
    • 2008
  • Cytokines play a central role in the mucosal immune response and are involved in regulation of nutrient absorption, metabolism and animal growth. This study investigated the effect of diet manipulation with specialized protein or peptide sources on expression of cytokine (IL-1, IL-6, IL-10, and TNF-${\alpha}$) mRNA abundance in different intestinal regions and at different ages post-weaning in piglets. A total of 48 (17 days of age, $6.16{\pm}0.34kg\;BW$) weanling pigs were fed either a corn-soy/whey protein basal diet, the basal diet supplemented with spray-dried plasma protein (SDPP), or the basal diet supplemented with $Peptiva^{(R)}$, a hydrolyzed marine plant protein. A fourth treatment group was fed the SDPP diet, but the feed intake level was limited (SDPP-LF). Pigs were killed at 3 and 10 d, and intestinal cytokine mRNA was measured by real-time PCR using the relative quantification method. The SDPP-LF group exhibited an increased TNF-${\alpha}$ mRNA abundance compared with the ad libitum SDPP group (p<0.05). The TNF-${\alpha}$ and IL-10 mRNA abundance increased from the proximal to distal part of the intestine, and the mRNA abundance was greater (p<0.01) in the distal intestine as compared with the proximal and middle intestine. The cytokines IL-1-${\beta}$, IL-10 and TNF-${\alpha}$ mRNA abundance also increased from d3 to d10 postweaning (p<0.01). In summary, restricted feeding increased the TNF-${\alpha}$ mRNA abundance in the small intestine, however neither SDPP nor peptide supplementation affected cytokine mRNA expression. Abundance of mRNA for most cytokines examined in this study increased with age post-weaning, suggesting that during 10 d after weaning the mucosal immune system is still under development.

HLA-restricted and Antigen-specific CD8+ T Cell Responses by K562 Cells Expressing HLA-A*0201

  • Yun, Sun-Ok;Sohn, Hyun-Jung;Yoon, Sung-Hee;Choi, Hee-Baeg;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.179-184
    • /
    • 2006
  • Background: Identification of antigen-specific T cells has yielded valuable information on pathologic process and the disease state. Assays for quantification of inflammatory cytokines or lytic-granule molecules have been generally used to evaluate antigen specific T cell response, however their applicability have been hampered due to the limited source of autologous antigen-presenting target cells (APC). Methods: K562, a leukemic cell line deficient of human leukocyte antigen (HLA), was transfected with a gene encoding HLA-A*02 (K562/ A*02) and its function as stimulator cells in inducing activation of HLA-matched T cells was evaluated by IFN-${\gamma}$ enzyme linked immunospot (ELISPOT) assay. Results: The stable transfectant K562/ A*02 pulsed with HLA- A*02 restricted peptide could specifically induce IFN-${\gamma}$ secretion by CD8+ T cells compared to no detectable secretion by CD4+ T cells. However, CD56+ NK cells secreted IFN-${\gamma}$ in both K562/ A*02 with peptide and without peptide. The number of IFN-${\gamma}$ secreted CD8+ T cells was increased according to the ratio of T cells to K562 and peptide concentration. Formalin-fixed K562/ A*02 showed similar antigen presenting function to live K562/ A*02. Moreover, K562/ A*02 could present antigenicpeptide to not only A*0201 restricted CD8+ T cells but also CD8+ T cells from A*0206 donor. Conclusion: These results suggest that K562/ A*02 could be generally used as target having specificity and negligible background for measuring CD8+ T cell responses and selective use of K562 with responsder matched HLA molecules on its surface as APC may circumvent the limitation of providing HLA-matched autologous target cells.

Development of a Rapid Spectrophotometric Method for Detecting Bacterial Mucinase Complex

  • Kim, Yoon-Hee;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.345-348
    • /
    • 2002
  • A rapid spectrophotometric method for detecting the mucinase complex was developed. Bovine submaxillary mucin is cleaved by commercial mucinase between the oligosaccharide chain and the side chain of peptide linkage, thereby liberating the N-acetyl neuraminic acid (NANA). The release of NANA resulted in an increase of absorbance at 280 nm. The susceptibility to NANA by the new method was found to be at least 10-fold more sensitive than the thiobarbituric acid method. Moreover, the quantification of NANA released from mucin by commercial neuraminidase and partially purified Vibrio parahaemolyticus mucinase showed a good linear correlation in proportion to the concentration of the enzyme used. These results demonstrate that the rapid identification of mucin degradation can be determined by a spectrophotometric assay, thereby providing a new, fast, and sensitive method for assaying the bacterial mucinase complex.

The Use of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) for Proteomics Research

  • Ng, Justin Tze-Yang;Hao, Piliang;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • 제5권4호
    • /
    • pp.95-103
    • /
    • 2014
  • Characterization and studies of proteome are challenging because biological samples are complex, with a wide dynamic range of abundance. At present the proteins are identified by digestion into peptides, with subsequent identification of the peptides by mass spectrometry (MS). MS is a powerful technique for the purpose, but it cannot identify every peptide in such complex mixtures simultaneously. For accurate analysis and quantification it is important to separate the peptides first by chromatography into fractions of a size that MS can handle. With these less complex fractions, the probability is increased of identifying peptides of low abundance that would otherwise experience ion suppression effects due to the presence of peptides of high abundance. Enrichment for peptides with certain post-translational modifications helps to increase their detection rates as well. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is a mixed-mode chromatographic technique which combines the use of electrostatic repulsion and hydrophilic interaction. This review provides an overview of ERLIC and its various proteomics applications. ERLIC has been demonstrated to have good orthogonality to reverse phase liquid chromatography (RPLC), making it useful as a first dimension in multidimensional liquid chromatography (MDLC) and fractionation of digests in general. Peptides elute in order of their isoelectric points and polarity. ERLIC has also been successfully utilized for the enrichment for phosphopeptides and glycopeptides, facilitating their identification. In addition, it is promising for the study of peptide deamidation. ERLIC performs comparably well or better than established methods for these various applications, and serves as a viable and efficient workflow alternative.