Browse > Article
http://dx.doi.org/10.5478/MSL.2014.5.2.52

Optimization of Enzyme Digestion Conditions for Quantification of Glycated Hemoglobin Using Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry  

Jeong, Ji-Seon (Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science)
Publication Information
Mass Spectrometry Letters / v.5, no.2, 2014 , pp. 52-56 More about this Journal
Abstract
Glycated hemoglobin (HbA1c) is used as an index of mean glycemia over prolonged periods. This study describes an optimization of enzyme digestion conditions for quantification of non-glycated hemoglobin (HbA0) and HbA1c as diagnostic markers of diabetes mellitus. Both HbA0 and HbA1c were quantitatively determined followed by enzyme digestion using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) with synthesized N-terminal hexapeptides as standards and synthesized isotope labeled hexapeptides as internal standards. Prior to quantification, each peptide was additionally quantified by amino acid composition analysis using ID-LC-MS/MS via acid hydrolysis. Each parameter was considered strictly as a means to improve digestion efficiency and repeatability. Digestion of hemoglobin was optimized when using 100 mM ammonium acetate (pH 4.2) and a Glu-C-to-HbA1c ratio of 1:50 at $37^{\circ}C$ for 20 h. Quantification was satisfactorily reproducible with a 2.6% relative standard deviation. These conditions were recommended for a primary reference method of HbA1c quantification and for the certification of HbA1c reference material.
Keywords
glycated hemoglobin; isotope dilution LC-MS/MS; enzyme digestion; diabetes mellitus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Little, R. R.; Rohlfing, C. L.; Sacks, D. B. Clin. Chem. 2011, 57, 205.   DOI   ScienceOn
2 van den Ouweland, J. M.; de Keijzer, M. H.; van Daal, H. Clin. Biochem. 2010, 43, 623.   DOI   ScienceOn
3 Thevarajah, M.; Nadzimah, M. N.; Chew, Y. Y. Clin. Biochem. 2009, 42, 430.   DOI   ScienceOn
4 Little, R. R.; Rohlfing, C. L.; Wiedmeyer, H. M.; Myers, G. L.; Sacks, D. B.; Goldstein, D. E. Clin. Chem. 2001, 47, 1985.
5 Goodall, I. Clin. Biochem. Rev. 2005, 26, 5.
6 Jeppsson, J. O.; Kobold, U.; Barr, J.; Finke, A.; Hoelzel, W.; Hoshino, T.; Miedema, K.; Mosca, A.; Mauri, P.; Paroni, R.; Thienpont, L.; Umemoto, M.; Weykamp, C. Clin. Chem. Lab. Med. 2002, 40, 78.
7 Finke, A.; Kobold, U.; Hoelzel, W.; Weykamp, C.; Miedema, K.; Jeppsson, J. O. Clin. Chem. Lab. Med. 1998, 36, 299.
8 Kaiser, P.; Akerboom, T.; Ohlendorf, R.; Reinauer, H. Clin. Chem. 2010, 56, 750.   DOI   ScienceOn
9 Vesper, H. W.; Mi, L.; Enada, A.; Myers, G. L. Rapid Commun. Mass Spectrom. 2005, 19, 2865.   DOI   ScienceOn
10 Jeppsson, J. O.; Jerntorp, P.; Sundkvist, G.; Englund, H.; Nylund, V. Clin. Chem. 1986, 32, 1867.
11 Jeong, J. S.; Lim, H. M.; Kim, S. K.; Ku, H. K.; Oh, K. H.; Park, S. R. J. Chromatogr. A 2011, 1218, 6596.   DOI   ScienceOn
12 Weiss, M.; Manneberg, M.; Juranville, J. F.; Lahm, H. W.; Fountoulakis, M. J. Chromatogr. A 1998, 795, 263.   DOI   ScienceOn
13 Drapeau, G. R. Methods Enzymol. 1976, 45, 469.   DOI
14 Sacks, D. B. Diabetes Care 2011, 34, 518.   DOI   ScienceOn
15 Bi, J.; Wu, L.; Yang, B.; Yang, Y.; Wang, J. Anal. Bioanal. Chem. 2012, 403, 549.   DOI   ScienceOn
16 Bry, L.; Chen, P. C.; Sacks, D. B. Clin. Chem. 2001, 47, 153.
17 Hirokawa, K.; Shimoji, K.; Kajiyama, N. Biotechnol. Lett. 2005, 27, 963.   DOI
18 Kobold, U.; Jeppsson, J. O.; Dulffer, T.; Finke, A.; Hoelzel, W.; Miedema, K. Clin. Chem. 1997, 43, 1944.