Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0052

MHC Multimer: A Molecular Toolbox for Immunologists  

Chang, Jun (Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Abstract
The advent of the major histocompatibility complex (MHC) multimer technology has led to a breakthrough in the quantification and analysis of antigen-specific T cells. In particular, this technology has dramatically advanced the measurement and analysis of CD8 T cells and is being applied more widely. In addition, the scope of application of MHC multimer technology is gradually expanding to other T cells such as CD4 T cells, natural killer T cells, and mucosal-associated invariant T cells. MHC multimer technology acts by complementing the T-cell receptor-MHC/peptide complex affinity, which is relatively low compared to antigen-antibody affinity, through a multivalent interaction. The application of MHC multimer technology has expanded to include various functions such as quantification and analysis of antigen-specific T cells, cell sorting, depletion, stimulation to replace antigen-presenting cells, and single-cell classification through DNA barcodes. This review aims to provide the latest knowledge of MHC multimer technology, which is constantly evolving, broaden understanding of this technology, and promote its widespread use.
Keywords
antigen-specific T cells; MHC multimer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Davis, M.M., Altman, J.D., and Newell, E.W. (2011). Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis. Nat. Rev. Immunol. 11, 551-558.   DOI
2 Dolton, G., Tungatt, K., Lloyd, A., Bianchi, V., Theaker, S.M., Trimby, A., Holland, C.J., Donia, M., Godkin, A.J., Cole, D.K., et al. (2015). More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology 146, 11-22.   DOI
3 Fehlings, M., Simoni, Y., Penny, H.L., Becht, E., Loh, C.Y., Gubin, M.M., Ward, J.P., Wong, S.C., Schreiber, R.D., and Newell, E.W. (2017). Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8(+) T cells. Nat. Commun. 8, 562.   DOI
4 Newell, E.W., Klein, L.O., Yu, W., and Davis, M.M. (2009). Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods 6, 497-499.   DOI
5 Lissina, A., Ladell, K., Skowera, A., Clement, M., Edwards, E., Seggewiss, R., van den Berg, H.A., Gostick, E., Gallagher, K., Jones, E., et al. (2009). Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J. Immunol. Methods 340, 11-24.   DOI
6 Niemiec, P.K., Read, L.R., and Sharif, S. (2006). Synthesis of chicken major histocompatibility complex class II oligomers using a baculovirus expression system. Protein Expr. Purif. 46, 390-400.   DOI
7 Luimstra, J.J., Garstka, M.A., Roex, M.C.J., Redeker, A., Janssen, G.M.C., van Veelen, P.A., Arens, R., Falkenburg, J.H.F., Neefjes, J., and Ovaa, H. (2018). A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J. Exp. Med. 215, 1493-1504.   DOI
8 Oelke, M., Maus, M.V., Didiano, D., June, C.H., Mackensen, A., and Schneck, J.P. (2003). Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig-coated artificial antigen-presenting cells. Nat. Med. 9, 619-624.   DOI
9 Maile, R., Wang, B., Schooler, W., Meyer, A., Collins, E.J., and Frelinger, J.A. (2001). Antigen-specific modulation of an immune response by in vivo administration of soluble MHC class I tetramers. J. Immunol. 167, 3708-3714.   DOI
10 Moon, J.J., Chu, H.H., Pepper, M., McSorley, S.J., Jameson, S.C., Kedl, R.M., and Jenkins, M.K. (2007). Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203-213.   DOI
11 Frosig, T.M., Yap, J., Seremet, T., Lyngaa, R., Svane, I.M., Thor Straten, P., Heemskerk, M.H., Grotenbreg, G.M., and Hadrup, S.R. (2015). Design and validation of conditional ligands for HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, and HLA-B*44:05. Cytometry A 87, 967-975.   DOI
12 Neudorfer, J., Schmidt, B., Huster, K.M., Anderl, F., Schiemann, M., Holzapfel, G., Schmidt, T., Germeroth, L., Wagner, H., Peschel, C., et al. (2007). Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J. Immunol. Methods 320, 119-131.   DOI
13 Scholler, J., Singh, M., Bergmeier, L., Brunstedt, K., Wang, Y., Whittall, T., Rahman, D., Pido-Lopez, J., and Lehner, T. (2010). A recombinant human HLA-class I antigen linked to dextran elicits innate and adaptive immune responses. J. Immunol. Methods 360, 1-9.   DOI
14 Garboczi, D.N., Hung, D.T., and Wiley, D.C. (1992). HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. U. S. A. 89, 3429-3433.   DOI
15 Greten, T.F., Slansky, J.E., Kubota, R., Soldan, S.S., Jaffee, E.M., Leist, T.P., Pardoll, D.M., Jacobson, S., and Schneck, J.P. (1998). Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19- specific CD8(+) T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc. Natl. Acad. Sci. U. S. A. 95, 7568-7573.   DOI
16 Hadrup, S.R., Bakker, A.H., Shu, C.J., Andersen, R.S., van Veluw, J., Hombrink, P., Castermans, E., Thor Straten, P., Blank, C., Haanen, J.B., et al. (2009). Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 6, 520-526.   DOI
17 Hess, P.R., Barnes, C., Woolard, M.D., Johnson, M.D., Cullen, J.M., Collins, E.J., and Frelinger, J.A. (2007). Selective deletion of antigen-specific CD8+ T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin. Blood 109, 3300-3307.   DOI
18 Huppa, J.B., Axmann, M., Mortelmaier, M.A., Lillemeier, B.F., Newell, E.W., Brameshuber, M., Klein, L.O., Schutz, G.J., and Davis, M.M. (2010). TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963-967.   DOI
19 Bandura, D.R., Baranov, V.I., Ornatsky, O.I., Antonov, A., Kinach, R., Lou, X., Pavlov, S., Vorobiev, S., Dick, J.E., and Tanner, S.D. (2009). Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813-6822.   DOI
20 Clement, M., Ladell, K., Ekeruche-Makinde, J., Miles, J.J., Edwards, E.S., Dolton, G., Williams, T., Schauenburg, A.J., Cole, D.K., Lauder, S.N., et al. (2011). Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. J. Immunol. 187, 654-663.   DOI
21 Tungatt, K., Bianchi, V., Crowther, M.D., Powell, W.E., Schauenburg, A.J., Trimby, A., Donia, M., Miles, J.J., Holland, C.J., Cole, D.K., et al. (2015) Antibody stabilization of peptide-MHC multimers reveals functional T cells bearing extremely low-affinity TCRs. J. Immunol. 194, 463-474.   DOI
22 Knabel, M., Franz, T.J., Schiemann, M., Wulf, A., Villmow, B., Schmidt, B., Bernhard, H., Wagner, H., and Busch, D.H. (2002). Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat. Med. 8, 631-637.   DOI
23 Kozono, H., White, J., Clements, J., Marrack, P., and Kappler, J. (1994). Production of soluble MHC class II proteins with covalently bound single peptides. Nature 369, 151-154.   DOI
24 Leisner, C., Loeth, N., Lamberth, K., Justesen, S., Sylvester-Hvid, C., Schmidt, E.G., Claesson, M., Buus, S., and Stryhn, A. (2008). One-pot, mix-and-read peptide-MHC tetramers. PLoS One 3, e1678.   DOI
25 Newell, E.W., Sigal, N., Nair, N., Kidd, B.A., Greenberg, H.B., and Davis, M.M. (2013). Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623-629.   DOI
26 Yuan, R.R., Wong, P., McDevitt, M.R., Doubrovina, E., Leiner, I., Bornmann, W., O'Reilly, R., Pamer, E.G., and Scheinberg, D.A. (2004). Targeted deletion of T-cell clones using alpha-emitting suicide MHC tetramers. Blood 104, 2397-2402
27 Sidobre, S. and Kronenberg, M. (2002). CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 268, 107-121.   DOI
28 Toebes, M., Coccoris, M., Bins, A., Rodenko, B., Gomez, R., Nieuwkoop, N.J., van de Kasteele, W., Rimmelzwaan, G.F., Haanen, J.B., Ovaa, H., et al. (2006). Design and use of conditional MHC class I ligands. Nat. Med. 12, 246-251.   DOI
29 Wooldridge, L., Scriba, T.J., Milicic, A., Laugel, B., Gostick, E., Price, D.A., Phillips, R.E., and Sewell, A.K. (2006). Anti-coreceptor antibodies profoundly affect staining with peptide-MHC class I and class II tetramers. Eur. J. Immunol. 36, 1847-1855.   DOI
30 Wu, J., Groh, V., and Spies, T. (2002). T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J. Immunol. 169, 1236-1240.   DOI
31 Schneck, J.P., Slansky, J.E., O'Herrin, S.M., and Greten, T.F. (2001). Monitoring antigen-specific T cells using MHC-Ig dimers. Curr. Protoc. Immunol. 35, 17.2.1-17.2.17.
32 Saini, S.K., Tamhane, T., Anjanappa, R., Saikia, A., Ramskov, S., Donia, M., Svane, I.M., Jakobsen, S.N., Garcia-Alai, M., Zacharias, M., et al. (2019). Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells. Sci. Immunol. 4, eaau9039.   DOI
33 O'Herrin, S.M., Slansky, J.E., Tang, Q., Markiewicz, M.A., Gajewski, T.F., Pardoll, D.M., Schneck, J.P., and Bluestone, J.A. (2001). Antigen-specific blockade of T cells in vivo using dimeric MHC peptide. J. Immunol. 167, 2555-2560.   DOI
34 Altman, J.D. and Davis, M.M. (2003). MHC-peptide tetramers to visualize antigen-specific T cells. Curr. Protoc. Immunol. 53, 17.3.1-17.3.33.
35 Altman, J.D., Moss, P.A., Goulder, P.J., Barouch, D.H., McHeyzer-Williams, M.G., Bell, J.I., McMichael, A.J., and Davis, M.M. (1996). Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94-96.   DOI
36 Rahimpour, A., Koay, H.F., Enders, A., Clanchy, R., Eckle, S.B., Meehan, B., Chen, Z., Whittle, B., Liu, L., Fairlie, D.P., et al. (2015). Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095-1108.   DOI
37 Reantragoon, R., Corbett, A.J., Sakala, I.G., Gherardin, N.A., Furness, J.B., Chen, Z., Eckle, S.B., Uldrich, A.P., Birkinshaw, R.W., Patel, O., et al. (2013). Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305-2320.   DOI
38 Rodenko, B., Toebes, M., Hadrup, S.R., van Esch, W.J., Molenaar, A.M., Schumacher, T.N., and Ovaa, H. (2006). Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat. Protoc. 1, 1120-1132.   DOI
39 Schmidt, J., Guillaume, P., Irving, M., Baumgaertner, P., Speiser, D., and Luescher, I.F. (2011). Reversible major histocompatibility complex I-peptide multimers containing Ni(2+)-nitrilotriacetic acid peptides and histidine tags improve analysis and sorting of CD8(+) T cells. J. Biol. Chem. 286, 41723-41735.   DOI
40 Schmitt, A., Tonn, T., Busch, D.H., Grigoleit, G.U., Einsele, H., Odendahl, M., Germeroth, L., Ringhoffer, M., Ringhoffer, S., Wiesneth, M., et al. (2011). Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51, 591-599.   DOI
41 Cebecauer, M., Guillaume, P., Mark, S., Michielin, O., Boucheron, N., Bezard, M., Meyer, B.H., Segura, J.M., Vogel, H., and Luescher, I.F. (2005). CD8+ cytotoxic T lymphocyte activation by soluble major histocompatibility complex-peptide dimers. J. Biol. Chem. 280, 23820-23828.   DOI
42 Day, C.L., Seth, N.P., Lucas, M., Appel, H., Gauthier, L., Lauer, G.M., Robbins, G.K., Szczepiorkowski, Z.M., Casson, D.R., Chung, R.T., et al. (2003). Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 112, 831-842.   DOI
43 Hirsch, J.D., Eslamizar, L., Filanoski, B.J., Malekzadeh, N., Haugland, R.P., Beechem, J.M., and Haugland, R.P. (2002). Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Anal. Biochem. 308, 343-357.   DOI
44 Cobbold, M., Khan, N., Pourgheysari, B., Tauro, S., McDonald, D., Osman, H., Assenmacher, M., Billingham, L., Steward, C., Crawley, C., et al. (2005). Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 202, 379-386.   DOI
45 Crowley, M.P., Fahrer, A.M., Baumgarth, N., Hampl, J., Gutgemann, I., Teyton, L., and Chien, Y. (2000). A population of murine gammadelta T cells that recognize an inducible MHC class Ib molecule. Science 287, 314-316.   DOI
46 Curtsinger, J., Deeths, M.J., Pease, P., and Mescher, M.F. (1997). Artificial cell surface constructs for studying receptor-ligand contributions to lymphocyte activation. J. Immunol. Methods 209, 47-57.   DOI
47 Bendall, S.C., Simonds, E.F., Qiu, P., Amir el, A.D., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., et al. (2011). Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687-696.   DOI
48 Bentzen, A.K., Marquard, A.M., Lyngaa, R., Saini, S.K., Ramskov, S., Donia, M., Such, L., Furness, A.J., McGranahan, N., Rosenthal, R., et al. (2016). Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037-1045.   DOI