• 제목/요약/키워드: Pennsylvania State

검색결과 314건 처리시간 0.028초

Rhizoctonia solani 추출액 첨가에 의한 Hyoscyamus muticus의 현탁세포배양 및 모상근배양에서 Sesquiterpene 생합성 (Biosynthesis of Sesquiterpene in Hairy Root and Cell Suspension Cultures of Hyoscyamus muticus by Elicitation Using Rhizoctonia solani Extracts)

  • BACK, Kyoungwhan;SHIN, Dong Hyun;KIM, Kil Ung;De HAAS Cynthia R.;CHAPPELL Joseph;CURTIS Wayne R.
    • 식물조직배양학회지
    • /
    • 제24권5호
    • /
    • pp.279-284
    • /
    • 1997
  • Hyoscyamus muticus의 phytoalexin으로 알려진 solavetivone, lubimin, rishitin 생합성에 결정적 역할을 담당하는 isoprenoid pathway의 첫 분지효소인 vetispiradiene synthase의 유도특성과 solavetivone, lubimin phytoalexin 생합성과의 관련성을 구명하기 위하여 H. muticus 현탁세포배양 및 모상근배양에 Rhizoctonia solani 추출액을 elicitor로 처리하였다. Elicitor을 처리하지 않은 현탁세포 및 모상근배양에서는 효소활성, 효소단백질 및 solavetivone, lubimin등이 전혀 검출되지 않았으나, elicitor을 처리한 세포에서는 효소활성이 급속히 유도되어 처리 12시간 후에 최고의 활성을 보였으며 그 후 점점 감소하였다. 효소활성의 정도는 면역반응을 이용하여 측정한 효소 단백질의 함량과 밀접한 상관관계를 보였으며, phytoalexin 총 함량은 모상근배양에서 2배이상 높았다. 특히 solavetivone 및 lubimin 생합성은 현탁 및 모상근배양에서 서로 다른 특이성을 보였는데, 현탁배양에서는 lubimin을, 모상근배양에서는 solavetivone을 선택적으로 다량 생산하였다.

  • PDF

유도초음파를 이용한 박판에서의 결함의 검출에 관한 연구 (Detection of Defects in a Thin Steel Plate Using Ultrasonic Guided Wave)

  • 정희돈;신현재
    • 비파괴검사학회지
    • /
    • 제18권6호
    • /
    • pp.445-454
    • /
    • 1998
  • 본 연구는 박판 용접부 결함 검출 기법의 확립을 위해서 실시된 기초 연구로서, 전기강판 소재의 모재에 인위적인 결함을 작성하고, 이론 및 시험적 결과를 이용하여 결함을 검출하기 위한 최적의 조건과 임계 검출 결함 크기를 조사한 것이다. 이를 위해서 소재의 dispersion curve를 구하고, 두께 2.4mm의 박판에 대해서 tone burst방식에 의한 초음파 탐상을 실시하였다. 실험적 검토를 행한 결과 840kHz의 가진 주파수와 30도 그리고 85도의 입사각이 최적의 탐상 조건임을 알았다. 한편, 초음파의 속도와 dispersion커브를 비교 검토하여 본 바, 30도의 입사각에서 발생하여 전파하는 초음파는 symmetic mode이고 85도의 입사각에서는 antisymmetric mode의 파가 전파하고 있었다. 결함의 위치와 형상에 따라 반사파의 특성이 다르게 나타나고 있었으며, 특히 표면 결함의 경우에는 antisymmetric 모드의 초음파가 symmetric 모드 보다 높은 반사파 에너지를 나타내고 있었다. 또한 이러한 초음파 모드의 종류와 결함 검출과의 관계에 대해서는 유도파의 구조에 의해서 설명이 가능했다.

  • PDF

Mineral-Based Slow Release Fertilizers: A Review

  • Noh, Young Dong;Komarneni, Sridhar;Park, Man
    • 한국토양비료학회지
    • /
    • 제48권1호
    • /
    • pp.1-7
    • /
    • 2015
  • Global population is expected to reach nine billion in 2050 and the total demand for food is expected to increase approximately by 60 percent by 2050 as compared to 2005. Therefore, it is important to increase crop production in order to meet the global demand for food. Slow release fertilizers have been developed and designed in order to improve the efficiency of fertilizers. Mineral-based slow release fertilizers are useful because the minerals have a crystalline structure and are environmentally friendly in a soil. This review focuses on slow release fertilizers based on montmorillonite, zeolite, and layered double hydroxide phases as a host for nutrients, especially N. Urea was successfully stabilized in the interlayer space of montmorillonite by the formation of urea-Mg or Ca complex, $[(Urea)_6Mg\;or\;Ca]^{2+}$ protecting its rapid degradation in soils. Naturally occurring zeolites occluded with ammonium nitrate and potassium nitrate by molten salt treatment could be used as slow release fertilizer because the occlusion process increased the capacity of zeolites to store nutrients in addition to exchangeable cations. Additionally, surface-modified zeolites could also be used as slow release fertilizer because the modified surface showed high affinity for anionic nutrients such as nitrate and phosphate. Moreover, there were attempts to develop and use synthetic layered double hydroxide as a carrier of nitrate because it has positively charged layers which electrostatically bond nitrate anions. Kaolin was also tested by combining with a polymer or through the mechanical-chemical process for slow release of nutrients.

An instrumented glove for grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung Hwan;Cannon, David;Freivalds, Andris
    • 대한인간공학회지
    • /
    • 제15권2호
    • /
    • pp.165-176
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufactruing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple- degree-of-freedom force feedback telemanipulation.

  • PDF

Creep Mechanisms of Calcium-Silicate-Hydrate: An Overview of Recent Advances and Challenges

  • Ye, Hailong
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.453-462
    • /
    • 2015
  • A critical review on existing creep theories in calcium-silicate-hydrate (C-S-H) is presented with an emphasis on several fundamental questions (e.g. the roles of water, relative humidity, temperature, atomic ordering of C-S-H). A consensus on the rearrangement of nanostructures of C-S-H as a main consequence of creep, has almost been achieved. However, main disagreement still exists on two basic aspects regarding creep mechanisms: (1) at which site the creep occurs, like at interlayer, intergranular, or regions where C-S-H has a relatively higher solubility; (2) how the structural rearrangement evolutes, like in a manner of interlayer sliding, intra-transfer of water at various scales, recrystallization of gelled-like particles, or dissolution-diffusion-reprecipitation at inter-particle boundary. The further understanding of creep behavior of C-S-H relies heavily on the appropriate characterization of its nanostructure.

Assessing the Nano-Dynamics of the Cell Surface

  • Bae, Chil-Man;Park, Ik-Keun;Butler, Peter J.
    • 비파괴검사학회지
    • /
    • 제32권3호
    • /
    • pp.263-268
    • /
    • 2012
  • It is important to know the mechanism of cell membrane fluctuation because it can be readout for the nanomechanical interaction between cytoskeleton and plasma membrane. Traditional techniques, however, have drawbacks such as probe contact with the cell surface, complicate analysis, and limit spatial and temporal resolution. In this study, we developed a new system for non-contact measurement of nano-scale localized-cell surface dynamics using modified-scanning ion-conductance microscopy. With 2 nm resolution, we determined that endothelial cells have local membrane fluctuations of ~20 nm, actin depolymerization causes increase in fluctuation amplitude, and ATP depletion abolishes all membrane fluctuations.

Improvements to the stability of electric field sensors

  • Lee, Dong-Oh;Robert Boston;Dietrich W. Langer;Joel Falk
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.495-496
    • /
    • 1998
  • The measurement of the amplitude and phase of electric fields on high voltage transmission lines is important for several reasons including a) Metering and determination of power flow, b) protective relaying. and c) fault sensing. The work reported here is directed toward a major improvement to optically based, electric-field sensors. This is a signal processing based technique for overcoming the instabilities of conventional, optically-based, electric-field sensors to changes in optical power or temperature.

  • PDF

Food service industry in the era of COVID-19: trends and research implications

  • Lee, Seoki;Ham, Sunny
    • Nutrition Research and Practice
    • /
    • 제15권sup1호
    • /
    • pp.22-31
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is a new type of respiratory disease that has been announced as a pandemic. The COVID-19 outbreak has changed the way we live. It has also changed the food service industry. This study aimed to identify trends in the food and food service industry after the COVID-19 outbreak and suggest research themes induced by industry trends. This study investigated the industry and academic information on the food and food service industry and societal trends resulting from the COVID-19 outbreak. The most noticeable changes in the food industry include the explosive increase in home meal replacement, meal-kit consumption, online orders, take-out, and drive-through. The adoption of technologies, including robots and artificial intelligence, has also been noted. Such industry trends are discussed in this paper from a research perspective, including consumer, employee, and organizational strategy perspectives. This study reviews the changes in the food service industry after COVID-19 and the implications that these changes have rendered to academia. The paper concludes with future expectations that would come in the era of COVID-19.

Macrophage Migration Inhibitory Factor (MIF) Interacts with Bim and Inhibits Bim-mediated Apoptosis

  • Liu, Lingfeng;Chen, Jinzhong;Ji, Chaoneng;Zhang, Jiayi;Sun, Junlei;Li, Yao;Xie, Yi;Gu, Shaohua;Mao, Yumin
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.193-199
    • /
    • 2008
  • The pro-apoptotic Bcl-2 family member Bim acts as a sensor for apoptotic stimuli and initiates apoptosis through the mitochondrial pathway. To identify novel regulators of Bim, we employed the yeast two-hybrid system and isolated the human gene encoding macrophage migration inhibitory factor (MIF), a ubiquitously expressed proinflammatory mediator that has also been implicated in cell proliferation, the cell cycle and carcinogenesis. The interaction between MIF and Bim was confirmed by both in vitro and in vivo protein interaction assays. Intriguingly, protein complexes between MIF and the three major Bim isoforms (BimEL/BimL/BimS) could be detected in HEK293 and K562 cells, especially in cells undergoing apoptosis. Moreover, exogenous expression of MIF partially inhibited Bim-induced apoptosis in HEK293 cells. SiRNA-mediated knockdown of MIF increased apoptosis in K562 cells exposed to the chemical oxidant diamide. Endogenous MIF may regulate the pro-apoptotic activity of Bim and inhibit the release of cytochrome c from mitochondria.

An instrumented Glove for Grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung-Hwan;Cannon, David;Freivalds, Andris
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.141-146
    • /
    • 1996
  • Hand posture and force, which define aspects of the way an object is grasped, are features of robotics manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct(VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufacturing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple-degree-of-freedom force feedback telemanipulation.ck telemanipulation.

  • PDF