An instrumented glove for grasp specification in virtual reality based point-and-direct telerobotics

  • Yun, Myung Hwan (Dept. of Industrial Engineering, Pohang University of science and Technology) ;
  • Cannon, David (Dept. of Industrial and Manufacturing Engineering, Penn State University) ;
  • Freivalds, Andris (Dept. of Industrial and Manufacturing Engineering, Penn State University)
  • Published : 1996.08.01

Abstract

Hand posture and force, which define aspects of the way an object is grasped, are features of robotic manipulation. A means for specifying these grasping "flavors" has been developed that uses an instrumented glove equipped with joint and force sensors. The new grasp specification system is being used at the Pennsylvania State University (Penn State) in a Virtual Reality based Point-and-Direct (VR-PAD) robotics implementation. In the Computer Integrated Manufacturing (CIM) Laboratory at Penn State, hand posture and force data were collected for manipulating bricks and other items that require varying amounts of force at multiple pressure points. The feasibility of measuring desired grasp characteristics was demonstrated for a modified Cyberglove impregnated with FSR (Force Sensitive Resistor) pressure sensors in the fingertips. A joint/force model relating the parameters of finger articulation and pressure to various lifting tasks was validated for the instrumented "wired" glove. Operators using such a modified glove may ultimately be able to configure robot grasping tasks in environments involving hazardous waste remediation, flexible manufactruing, space operations and other flexible robotics applications. In each case, the VR-PAD approach improved the computational and delay problems of real-time multiple- degree-of-freedom force feedback telemanipulation.

Keywords