DOI QR코드

DOI QR Code

Creep Mechanisms of Calcium-Silicate-Hydrate: An Overview of Recent Advances and Challenges

  • Ye, Hailong (Department of Civil and Environmental Engineering, The Pennsylvania State University, State College)
  • Received : 2015.04.23
  • Accepted : 2015.09.01
  • Published : 2015.12.31

Abstract

A critical review on existing creep theories in calcium-silicate-hydrate (C-S-H) is presented with an emphasis on several fundamental questions (e.g. the roles of water, relative humidity, temperature, atomic ordering of C-S-H). A consensus on the rearrangement of nanostructures of C-S-H as a main consequence of creep, has almost been achieved. However, main disagreement still exists on two basic aspects regarding creep mechanisms: (1) at which site the creep occurs, like at interlayer, intergranular, or regions where C-S-H has a relatively higher solubility; (2) how the structural rearrangement evolutes, like in a manner of interlayer sliding, intra-transfer of water at various scales, recrystallization of gelled-like particles, or dissolution-diffusion-reprecipitation at inter-particle boundary. The further understanding of creep behavior of C-S-H relies heavily on the appropriate characterization of its nanostructure.

Keywords

References

  1. Ali, I., & Kesler, C. E. (1964). Mechanisms of creep in concrete. Champaign, IL: University of Illinois.
  2. Aligizaki, K. K. (2006). Pore structure of cement-based materials: Testing, interpretation and requirements. Boca Raton, FL: CRC Press.
  3. Alizadeh, R., Beaudoin, J. J., & Raki, L. (2010). Viscoelastic nature of calcium silicate hydrate. Cement & Concrete Composites, 32(5), 369-376. https://doi.org/10.1016/j.cemconcomp.2010.02.008
  4. Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium-silicate-hydrate in cement. Nature Materials, 6(4), 311-316. https://doi.org/10.1038/nmat1871
  5. Bazant, Z. (1972). Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures. Nuclear Engineering and Design, 20(2), 477-505. https://doi.org/10.1016/0029-5493(72)90124-0
  6. Bazant, Z. P. (1983). Mathematical model for creep and thermal shrinkage of concrete at high temperature. Nuclear Engineering and Design, 76(2), 183-191. https://doi.org/10.1016/0029-5493(83)90133-4
  7. Bazant, Z. P. (2001). Prediction of concrete creep and shrinkage: Past, present and future. Nuclear Engineering and Design, 203(1), 27-38. https://doi.org/10.1016/S0029-5493(00)00299-5
  8. Bazant, Z. P., Hauggaard, A. B., Baweja, S., & Ulm, F.-J. (1997). Microprestress-solidification theory for concrete creep. I: Aging and drying effects. Journal of Engineering Mechanics, 123(11), 1188-1194. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)
  9. Beltzung, F., & Wittmann, F. H. (2005). Role of disjoining pressure in cement based materials. Cement and Concrete Research, 35(12), 2364-2370. https://doi.org/10.1016/j.cemconres.2005.04.004
  10. Bu, Y., Saldana, C., Handwerker, C., & Weiss, J. (2015). The role of calcium hydroxide in the elastic and viscoelastic response of cementitious materials: A Nanoindentation and SEM-EDS Study (pp. 25-34). Nanotechnology in Construction: Springer.
  11. Chae, S. R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R., et al. (2013). Advanced nanoscale characterization of cement based materials using X-ray synchrotron radiation: A review. International Journal of Concrete Structures and Materials, 7(2), 95-110. https://doi.org/10.1007/s40069-013-0036-1
  12. Chaube, R., Shimomura, T., & Maekawa, K. (1993). Multiphase water movement in concrete as a multi-component system. In RILEM proceedings (p. 139). Chapman & Hall.
  13. Chen, H., Wyrzykowski, M., Scrivener, K., & Lura, P. (2013). Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution. Cement and Concrete Research, 49, 38-47. https://doi.org/10.1016/j.cemconres.2013.03.013
  14. Cohan, L. H. (1938). Sorption hysteresis and the vapor pressure of concave surfaces. Journal of the American Chemical Society, 60(2), 433-435. https://doi.org/10.1021/ja01269a058
  15. Feldman, R. F. (1972). Mechanism of creep of hydrated Portland cement paste. Cement and Concrete Research, 2(5), 521-540. https://doi.org/10.1016/0008-8846(72)90107-X
  16. Feldman, R. F., & Sereda, P. J. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Materiaux et Construction, 1(6), 509-520. https://doi.org/10.1007/BF02473639
  17. Glucklich, J., & Ishai, O. (1962). Creep mechanism in cement mortar. ACI Journal Proceedings, 59(7), 923-948.
  18. Green, D. J. (1998). An introduction to the mechanical properties of ceramics. Cambridge, UK: Cambridge University Press.
  19. Hakkinen, T. (1986). Properties of alkali-activated slag concrete. Valtion teknillinen tutkimuskeskus, Betoni-ja silikaattitekniikan laboratorio.
  20. Jennings, H. M. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30(1), 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4
  21. Jennings, H. M. (2008). Refinements to colloid model of CSH in cement: CM-II. Cement and Concrete Research, 38(3), 275-289. https://doi.org/10.1016/j.cemconres.2007.10.006
  22. Jirasek, M., & Havlasek, P. (2014). Microprestress-solidification theory of concrete creep: Reformulation and improvement. Cement and Concrete Research, 60, 51-62. https://doi.org/10.1016/j.cemconres.2014.03.008
  23. Jones, C. A., & Grasley, Z. C. (2011). Short-term creep of cement paste during nanoindentation. Cement & Concrete Composites, 33(1), 12-18. https://doi.org/10.1016/j.cemconcomp.2010.09.016
  24. Klug, P., & Wittmann, F. (1974). Activation energy and activation volume of creep of hardened cement paste. Materials Science and Engineering, 15(1), 63-66. https://doi.org/10.1016/0025-5416(74)90030-5
  25. Kovler, K., & Zhutovsky, S. (2006). Overview and future trends of shrinkage research. Materials and Structures, 39(9), 827-847. https://doi.org/10.1617/s11527-006-9114-z
  26. Li, V. C. (2012). Tailoring ECC for special attributes: A review. International Journal of Concrete Structures and Materials, 6(3), 135-144. https://doi.org/10.1007/s40069-012-0018-8
  27. Li, X., Grasley, Z., Garboczi, E., & Bullard, J. (2015). Modeling the apparent and intrinsic viscoelastic relaxation of hydrating cement paste. Cement & Concrete Composites, 55, 322-330. https://doi.org/10.1016/j.cemconcomp.2014.09.012
  28. Li, J., & Yao, Y. (2001). A study on creep and drying shrinkage of high performance concrete. Cement and Concrete Research, 31(8), 1203-1206. https://doi.org/10.1016/S0008-8846(01)00539-7
  29. Lodeiro, I. G., Fernandez-Jimenez, A., Palomo, A., & Macphee, D. (2010). Effect on fresh CSH gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research, 40(1), 27-32. https://doi.org/10.1016/j.cemconres.2009.08.004
  30. Lothenbach, B., & Nonat, A. (2015). Calcium silicate hydrates: Solid and liquid phase composition. Cement and Concrete Research, 78, 57-70. https://doi.org/10.1016/j.cemconres.2015.03.019
  31. Maekawa, K., Ishida, T., & Kishi, T. (2003). Multi-scale modeling of concrete performance. Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  32. Manzano, H., Masoero, E., Lopez-Arbeloa, I., & Jennings, H. M. (2013). Shear deformations in calcium silicate hydrates. Soft Matter, 9(30), 7333-7341. https://doi.org/10.1039/c3sm50442e
  33. Maruyama, I., Nishioka, Y., Igarashi, G., & Matsui, K. (2014). Microstructural and bulk property changes in hardened cement paste during the first drying process. Cement and Concrete Research, 58, 20-34. https://doi.org/10.1016/j.cemconres.2014.01.007
  34. Mindess, S., Young, J. F., & Darwin, D. (2003). Concrete (2nd ed.). Upper Saddle River: Pearson Education, Inc.
  35. Neville, A. (1981). Properties of concrete (3rd ed.). London: Pitman Publishing Ltd.
  36. Nguyen, D.-T., Alizadeh, R., Beaudoin, J. J., Pourbeik, P., & Raki, L. (2014). Microindentation creep of monophasic calcium-silicate-hydrates. Cement & Concrete Composites, 48, 118-126. https://doi.org/10.1016/j.cemconcomp.2013.11.011
  37. Nguyen, D.-T., Alizadeh, R., Beaudoin, J., & Raki, L. (2013). Microindentation creep of secondary hydrated cement phases and C-S-H. Materials and Structures, 46(9), 1519-1525. https://doi.org/10.1617/s11527-012-9993-0
  38. Nonat, A. (2004). The structure and stoichiometry of CSH. Cement and Concrete Research, 34(9), 1521-1528. https://doi.org/10.1016/j.cemconres.2004.04.035
  39. Pachon-Rodriguez, E. A., Guillon, E., Houvenaghel, G., & Colombani, J. (2014). Wet creep of hardened hydraulic cements-Example of gypsum plaster and implication for hydrated Portland cement. Cement and Concrete Research, 63, 67-74. https://doi.org/10.1016/j.cemconres.2014.05.004
  40. Papatzani, S., Paine, K., & Calabria-Holley, J. (2015). A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Construction and Building Materials, 74, 219-234. https://doi.org/10.1016/j.conbuildmat.2014.10.029
  41. Pellenq, R.-M., Lequeux, N., & Van Damme, H. (2008). Engineering the bonding scheme in C-S-H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159-174. https://doi.org/10.1016/j.cemconres.2007.09.026
  42. Pickett, G. (1942). The effect of Chang in moisturecontent on the crepe of concrete under a sustained load. ACI Journal Proceedings, 38, 333-356.
  43. Powers, T. C. (1958). Structure and physical properties of hardened Portland cement paste. Journal of the American Ceramic Society, 41(1), 1-6.
  44. Powers, T. (1968). The thermodynamics of volume change and creep. Materiaux et Construction, 1(6), 487-507. https://doi.org/10.1007/BF02473638
  45. Powers, T. C., & Brownyard, T. L. (1946). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43(9), 249-336.
  46. Radlinska, A., Rajabipour, F., Bucher, B., Henkensiefken, R., Sant, G., & Weiss, J. (2008). Shrinkage mitigation strategies in cementitious systems: A closer look at differences in sealed and unsealed behavior. Transportation Research Record: Journal of the Transportation Research Board., 2070(1), 59-67. https://doi.org/10.3141/2070-08
  47. Ruetz, W. (1968). A hypothesis for the creep of hardened cement paste and the influence of simultaneous shrinkage. In Proceedings of the structure of concrete and its behavior under load (pp. 365-387).
  48. Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. International Journal of Concrete Structures and Materials, 9(2), 1-11. https://doi.org/10.1007/s40069-014-0087-y
  49. Singh, B. P., Yazdani, N., & Ramirez, G. (2013). Effect of a time dependent concrete modulus of elasticity on prestress losses in bridge girders. International Journal of Concrete Structures and Materials, 7(3), 183-191. https://doi.org/10.1007/s40069-013-0037-0
  50. Thomas, J. J., & Jennings, H. M. (2006). A colloidal interpretation of chemical aging of the CSH gel and its effects on the properties of cement paste. Cement and Concrete Research, 36(1), 30-38. https://doi.org/10.1016/j.cemconres.2004.10.022
  51. Vandamme, M., & Ulm, F.-J. (2009). Nanogranular origin of concrete creep. Proceedings of the National Academy of Sciences, 106(26), 10552-10557. https://doi.org/10.1073/pnas.0901033106
  52. Vichit-Vadakan, W., & Scherer, G. (2001). Beam-bending method for permeability and creep characterization of cement paste and mortar. In Proceedings of the 6th international conference on creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials (pp. 27-32). Cambridge, MA: Elsevier.
  53. Vlahinic, I., Thomas, J. J., Jennings, H. M., & Andrade, J. E. (2012). Transient creep effects and the lubricating power of water in materials ranging from paper to concrete and Kevlar. Journal of the Mechanics and Physics of Solids, 60(7), 1350-1362. https://doi.org/10.1016/j.jmps.2012.03.003
  54. Wittmann, F. (1973). Interaction of hardened cement paste and water. Journal of the American Ceramic Society, 56(8), 409-415. https://doi.org/10.1111/j.1151-2916.1973.tb12711.x
  55. Wittmann, F. (2008). Heresies on shrinkage and creep mechanisms. In Proceedings of the 8th international conference on creep, shrinkage and durability mechanics of concrete and concrete structures (CONCREEP 8) (pp. 3-9).
  56. Wittmann, F., & Roelfstra, P. (1980). Total deformation of loaded drying concrete. Cement and Concrete Research, 10(5), 601-610. https://doi.org/10.1016/0008-8846(80)90023-X
  57. Ye, H., Cartwright, C., Rajabipour, F., & Radlinska, A. (2014). Effect of drying rate on shrinkage of alkali-activated slag cements. In 4th international conference on the durability of concrete structure (ICDCS 2014) (pp. 254-261). Purdue University.
  58. Ye, H., Fu, C., Jin, N., & Jin, X. (2015). Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition. Computers and Concrete, 15(2), 183-198. https://doi.org/10.12989/cac.2015.15.2.183

Cited by

  1. Effect of Alkalis on Cementitious Materials:Understanding the Relationship between Composition, Structure, and Volume Change Mechanism vol.15, pp.4, 2015, https://doi.org/10.3151/jact.15.165
  2. Effects of Variable Humidity on the Creep Behavior of Concrete and the Long-Term Deflection of RC Beams vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/8301971
  3. The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete vol.16, pp.7, 2015, https://doi.org/10.3151/jact.16.293
  4. Nanoscale origins of creep in calcium silicate hydrates vol.9, pp.1, 2015, https://doi.org/10.1038/s41467-018-04174-z
  5. New insights into creep and creep recovery of hardened cement paste at micro scale vol.248, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118724
  6. A comparative study on shrinkage characteristics of graphene oxide (GO) and graphene nanoplatelets (GNPs) modified alkali-activated slag cement composites vol.54, pp.3, 2021, https://doi.org/10.1617/s11527-021-01695-w
  7. Experimental investigation of the short-term creep recovery of hardened cement paste at micrometre length scale vol.149, pp.None, 2015, https://doi.org/10.1016/j.cemconres.2021.106562