• Title/Summary/Keyword: Penetrometer cone index

Search Result 21, Processing Time 0.028 seconds

Development of A System for Decision of Strength Parameters and of Degree of Compaction in Compacted Soil with Cone Penetrometer (콘관입시험기를 이용한 다짐도 측정 및 지반정수 추출법 개발)

  • Lim, YuJin;Lee, HyeonSeung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • To evaluate the compaction in the domestic construction sites, mainly(PBT) plate bearing test is used. PBT may result in over-estimation in the well-compacted area. Estimation method for the degree of compaction was developed from the penetration index of the surface by cone penetration. The developed system is easily attached to the mobile transportation and directly can acquire the degree of compaction.

  • PDF

In-situ estimation of effective rooting depth for upland crops using hand penetration of cone probe (원추형 탐침봉을 이용한 밭작물 유효근권심 현장 진단)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.183-189
    • /
    • 2015
  • Plant root penetration through soil profile is restricted by compacted layer such as plow pan under conventional tillage. For detecting the compact layer, we made a graduated T-shape probe and measured compared between the depths with rapid change in feeling hardness of hand penetration using T-shape probe and with a rapid increase of penetrometer cone index. On upland crops, including red pepper, corn, soybean and cucumber, plow pan depth ranged from 10 cm to 25 cm depth. The effective rooting depth (ER) had significant correlation with the plow pan depth (PP) except soils with the shallow ground water and/or poorly drained soil. The regression equation was ER = 0.9*PP ($R^2=0.54^{**}$, N = 14) with the applicative PP range of 10-25 cm.

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT (다짐품질관리를 위한 IoT 기반 DCPT 적용 평가)

  • Jisun, Kim;Jinyoung, Kim;Namgyu, Kim;Sungha, Baek;Jinwoo, Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

Condition Evaluation of the Pavement Foundations Using Multi-load Level FWD Deflections (다단계 하중 FWD를 사용한 도로기초 상태평가 연구)

  • Park, Hee-Mun;Kim, Richard Y.;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.261-271
    • /
    • 2003
  • A condition evaluation procedure for the pavement foundations using multi-load level Falling Weight Deflectometer(FWD) deflections is presented in this paper. A dynamic finite element program incorporating a stress-dependent material model, was used to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical responses, such as stresses and strains in base and subgrade layers, have been established. FWD deflection data, Dynamic Cone Penetrometer(UP) data, and repeated load resilient modulus testing results used in developing this procedure were collected from the Long Term Pavement Performance (LTPP) and North Carolina Department of Transportation (NCDOT) database. Research effort focused on investigation of the effect of the FWD load level on the condition evaluation procedures. The results indicate that the proposed procedure can estimate the pavement foundation conditions. It is also found that structurally adjusted Base Damage Index (BDI) and Base Curvature Index (BCI) are good indicators for the prediction of stiffness characteristics of aggregate base and subgrade respectively. A FWD test with a load of 66.7 kN or less does not improve the accuracy of this procedure. Results from the study for the nonlinear behavior of a pavement foundations indicate that the deflection ratio obtained from multi-load level deflections can predict the type and quality of the pavement foundation materials.

Soil Characterization of the Field where Rice has been Cultivated during Five Years (최근 5년간 벼농사 논의 토양 특성 연구)

  • Cha, Eun-Jin;Lee, Jin-Kyeong;Jang, Min-Ho;Choi, Min-A;Kim, Jae-Hyun;Han, Seung-Je;Park, Jin-Hee;Shin, Chang-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.8-13
    • /
    • 2021
  • The study for soil has been conducted separately by several areas such as soil mechanics and soil chemistry. Soil is important in terms of prediction of how the plant grow with nutrient requirement. Also, soil is important for machines to work on to solve labor shortage and save farmers from harsh environment during farm work. To meet diverse needs related to soil in agriculture, the soil related study needs to be conducted synthetically. Thus, we tried to obtain the data related to soil chemistry including pH and Electrical Conductivity (EC) with data related to soil mechanics including Cone Index (CI), moisture content, soil classification. Specifically, the condition of the field was set to be cultivated at least for five years continuously at a first step. The soil was taken from 30 sites. CI was obtained using the soil penetrometer and soil classification was conducted using sieve analysis with eight kinds of sieve. The soil was taken on December when is during winter in Korea. There was variation of data including moisture content and CI.

Development of Self-propelled Explosive Subsoiler (1) - Present Status of Soil Compaction and Subsoil Management in Orchard - (자주식 심토환경 개선기 개발(1) - 과수원의 토양 다짐 특성 및 심토 관리 실태 -)

  • Lee, Dong-Hoon;Park, Woo-Pung;Lee, Kyou-Seung
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.397-403
    • /
    • 2009
  • This study was carried out to investigate the present status of subsoil compaction, and subsoil compaction management in orchard as a basic study for developing a self-propelled explosive subsoiler. Subsoil compaction was evaluated using the soil penetration resistance. Soil cone index was measured using the DIK 5520 type cone penetrometer in several fruit farms such as apple, pear, peach and grapes during growing seasons of these fruit in Jecheon, Gamgok, Choongju, Cheonan and Hwasung areas. Most of the subsoil managing machinery were either explosive type or digging type attached to the tractor or power tiller and turning radius of this machine was more than 3-5 m. Many of the farmers wanted to use the subsoiler which can put lime into soil and rupture soil at the same time. For most of the orchard fields, soil penetration resistance in vehicle traffic area was increased quickly and reached about 1.0 MPa in 5 cm soil depth. As the soil depth increased to 15-20 cm, cone penetration resistance reached about 2.0-2.5 MPa which restricted root growth seriously. Thus it was concluded that one of the main reason for increasing the soil compaction in orchard fields is agricultural vehicle traffic. In the vicinity of fruit trees, compaction is not so serious compared to that of the vehicle traffic area, but as the soil depth increased to 20-25 cm, in most of the orchard fields soil penetration resistance reached about 2.0-2.5 MPa which is the root growth-limiting value. Considering the rooting depth of fruit trees which ranged 30-60 cm for apple, pear and peach, and 20-30 cm for grape, it is necessary to loosen the subosoil and improve the subsoil conditions using subsoiler.

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

A Study on the Relation between Dynamic Deflection Modulus and In-Situ CBR Using a Portable FWD (소형FWD를 이용한 노상토의 동적변형계수와 현장 CBR의 상관 연구)

  • Kang, Hee Bog;Kim, Kyo Jun;Park, Sung Kyoon;Kim, Jong Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2008
  • The road construction, as part of effort to ease the worsening traffic, has been underway throughout the nation, while the existing road has been increasingly losing its load carrying capacity due to such factors as heavy traffic and weathering. In the case of site, the soil type, plasticity index, and specific gravity were SC, 12.2%, and 2.66, respectively. The maximum dry density, optimum moisture content and modified CBR were $1.895g/cm^3$ (Modified Compaction D), 13.6%, and 16.2%, respectively. A correlation of coefficient expressed good interrelationship by 0.90 between the CBR estimated from a dynamic penetration index of dynamic cone penetrometer test and a deformation modulus converted from a dynamic deflection modulus obtained from a portable FWD test.

Application of Ground Penetrating Radar for Estimation of Loose Layer (지반 이완구간 추정을 위한 지하투과레이더의 적용)

  • Hong, Won-Taek;Kang, Seonghun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.41-48
    • /
    • 2015
  • An investigation of a void and a loose layer of the ground is essential in order to prevent the losses of life and properties caused by subsidence and sinkage of the ground. Recently, studies on the ground penetrating radar survey have been actively conducted in order to estimate the void and the loose layer of the ground. However, an error can be committed by contrarily predicting a dense ground and a loose layer because the ground penetrating radar estimates an interface depth between geo-materials that have different electrical impedances. In this study, a loose ground depth is estimated using the characteristics of the reflected electromagnetic wave obtained from the ground penetrating radar survey. To gather the signals according to the loose ground depths, the ground penetrating radar survey is conducted on a field which underwent a huge ground settlement. In addition, the dynamic cone penetration test is performed to verify the result of the loose ground depth estimation from the ground penetrating radar survey. From the analysis of the reflection characteristics of the electromagnetic wave, a phase of an electromagnetic wave reflected from a denser soil layer is found to be identical with that of the first measured signal. On the other hand, a phase of an electromagnetic wave reflected from the loose soil layer is found to be opposed to that of the first detected signal. The comparison between the dynamic cone penetration index and electromagnetic signals by the ground penetrating radar shows that the estimated depth of the loose or dense layer is perfectly matched with a high reliability. The ground penetrating radar survey and the signal analysis performed in this study can be used not only for the survey of interface depth between the discontinuity layers but also for the estimation of the loose layer.