• Title/Summary/Keyword: Penetration Characteristics

Search Result 1,198, Processing Time 0.025 seconds

MACROSCOPIC STRUCTURE AND ATOMIZATION CHARACTERISTICS OF HIGH-SPEED DIESEL SPRAY

  • Park, S.-W.;Lee, C.-S.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.157-164
    • /
    • 2003
  • An experimental and numerical study was performed to investigate the macroscopic and microscopic atomization characteristics of high-speed diesel spray issued from the common-rail injection system. For the experiments, spray visualization system and a phase Doppler particle analyzer system were utilized to obtain the spray atomization characteristics such as the process of spray development, spray tip penetration, and SMD distribution. In order to analyze the process of spray atomization with KIVA-3 code, the TAB breakup model is changed to the KH-DDB competition model, which assumes the competition between the wave instability and droplet deformation causes the droplet breakup above the breakup length. The calculated results were also compared with the experiments in terms of spray tip penetration and SMD distribution. The results provide the process of spray development, axial and radial distribution of SMD, and calculated overall SMD as a function of time after start of injection.

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

A Study on the Injection Characteristics of Biodiesel Fuels Injected through Common-rail Injection System (커먼레일식 분사시스템에서 바이오디젤연료의 분사특성에 관한 연구)

  • Seo, Young-Taek;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.97-104
    • /
    • 2007
  • The object of this work is to analyze the macroscopic spray performance and atomization characteristics between diesel and biodiesel fuels. In this study, the effects of mixture ratios of biodiesel fuel on the spray tip penetration, fuel injection rate, spray cone angle, and the atomization characteristics such as droplet size, droplets distribution, and spray arrival time according to the axial distance were investigated at various injection parameters. It is revealed that the injection rate is more affected by injection pressure than mixture ratio. And, the spray development process is closely matched between diesel and biodiesel fuels. However, the droplet atomization characteristics of biodiesel shows deteriorated results as the mixture ratio of biodiesel increased because of the high viscosity and density.

Spray and Evaporation Characteristics of DME fuel at the High pressure and temperature (고온 고압하에서의 DME 연료 분무 및 증발 특성)

  • Kim, Hyung-Jun;Suh, Hyun-Gyu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • The purpose of this study is to analyze spray and evaporation characteristics of DME fuel at the high pressure and temperature. For the numerical analysis of dimethyl ether(DME) fuel spray characteristics, hybrid breakup model was applied to the DME spray and its breakup process. In order to obtain experimental results for comparison with the predicted ones, the visualization of the spray evolution process was executed by using a Nd:YAG laser. Also, the numerical investigation was conducted by the two hybrid models for primary and secondary breakup of the DME spray. The primary breakup model was used the Kelvin-Helmholtz(KH) breakup model. In the secondary breakup process, Rayleigh-Taylor(RT) and Drop Deformation Breakup(DDB) model was applied. The results of this study provide the macroscopic characteristics of the spray such as spray tip penetration and cone angle, and prediction accuracy of the two hybrid model.

  • PDF

Evaluation of Droplet Breakup Models and Application to the Diesel Engine Combustion Analysis (분무 분열 모델의 평가 및 디젤 엔진 연소 해석에의 적용)

  • Park, Wonah;Lee, Hyowon;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.86-91
    • /
    • 2013
  • It is important to understand the fuel injection characteristics, particularly the atomization, penetration, and breakup, for reducing the emissions in Diesel engines because those characteristics are related to the formation of the emissions. 3-dimensional CFD code can provide a fundamental understanding of those characteristics. In this study, two different breakup models (the Reitz-Diwakar model and the Kelvin-Helmholts Rayleigh Taylor model) were validated with the experimental data in a constant volume vessel. Then, the effect of the breakup model on the characteristics of the engine combustion and emission was studied.

Spray Characteristics of High-Pressure Injector in Direct-Injection Gasoline Engine (직분식 가솔린 기관 고압 인젝터의 연료 무화 특성)

  • 이창식;최수천;김민규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.1-6
    • /
    • 1999
  • An experimental study was carried out to investigate the global spray behavior and spray characteristics of high-pressure fuel injector in the direct-injection goasoline enginet. The atomization characteristics of fuel spary such as mean droplet size, mean velocity , and velocity distribution were measured by the phase Doppler particle analyzer. The spray tip penetration and spray width were investigated by the result fo visualizaiton experiment. The quantitiative spary characteristics of injector spray were measured under various sparay conditions and ambient pressures. The results of experiment show that the increase in ambient pressure have influence on the spray tip penetration and spray development process. Also, the influence of injection pressure and measuring location on the mean velocity and droplet size distribution were discussed.

  • PDF

Mixing Characteristics of Multiple Injection in Supersonic Flow (초음속 유동장 내 연료 다중 분사의 혼합 특성)

  • Lee Jong-Hwan;Lee Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.53-56
    • /
    • 2004
  • The mixing characteristics of a multiple transverse injection system in a scramjet combustor were studied with numerical methods. The distance among injectors on mixing characteristics were investigated. The three-dimensional Wavier-Stokes equations including k-w SST turbulence model were solved. It was shown that the mixing characteristics of a multiple transverse injection system were very different from those of a single and a dual injection system; the rear injection flow was strongly influenced by blocking effect due to the momentum flux of the front injection flow and thus had higher expansion and penetration than the front injection flow. The multiple injection system had higher mixing rate, higher penetration but had more losses of stagnation pressure than the single injection system.

  • PDF

Study of Hypervelocity Penetration Characteristics of Segmented Tungsten Penetrator (분절형 텅스텐 관통자의 초고속 관통특성에 관한 연구)

  • Jo, Jong Hyun;Lee, Young Shin;Kim, Jae Hoon;Bae, Yong Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.953-960
    • /
    • 2013
  • This study aimed to investigate the penetration characteristics of a segmented penetrator with normal and inclined angles. The length to diameter ratio (L/D) of the segmented penetrator was varied as 1.0, 0.5, and 0.25. Moreover, impact velocities of 1.5, 2.0, and 2.5 km/s and inclination angles of $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were successively applied. The AUTODYN-3D code was used to simulate the penetration performance of the segmented penetrator. The results show that the penetration performance of the segmented penetrator with steel plates was obviously higher than that of the corresponding continuous penetrator with steel plates. The outstanding penetration performance of the segmented penetrator can be observed when the impact velocity was 2.0 km/s and L/D = 1. In this case, the penetration performance of the segmented penetrator was 7% higher than that of the corresponding continuous penetrator. This trend was attributable to the interaction between the reactive plate and the projectile. The extent of the interaction relies on the relative velocities of the plate and projectiles, inclination angle, and number of segmented penetrators. It was proven that the penetration performance of the segmented penetrator can be improved by increasing the impact velocity, number of segmented penetrators between segments, and penetrator length.

Analysis of Degradation of Durability of the GDL with Various MPL Penetration Levels (MPL 침투깊이에 따른 GDL 내구성능 저하 특성 분석에 관한 연구)

  • Park, Jaeman;Cho, Junhyun;Ha, Taehun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.77.1-77.1
    • /
    • 2010
  • Durability problems of gas diffusion layer(GDL) is one of the important issues for accomplishing commercialization of proton exchange membrane fuel cell(PEMFC). GDL is strongly related to the performance of PEMFC because one of the main function of GDL is to work as a path of fuel, air and water. When the GDL is degraded, it causes water balance problems such as the flooding phenomenon. Thus, investigating the durability characteristics of the GDL is important and understanding the GDL degradation process is needed. In this study, the GDLs are degraded by carbon corrosion stress method which is the electrochemical degradation mode. To determine the effects of carbon corrosion of the GDL, 1.45 V of potential is imposed for 96 hours. In this manner, in the previous research, the structure between the substrate and the MPL is weaken. Further investigations are needed to clarify this phenomenon. Therefore, in this study, the carbon corrosion stress method is carried out with GDLs which have various MPL penetration levels and the effects of the MPL penetration level on the characteristics change of the GDL are analyzed. The changes in characteristics are measured with various properties of GDL such as weight, thickness and static contact angle. The degraded GDL shows loss of their properties.

  • PDF

The Effect of Wall Friction on Deformation Characteristics of the Cellular Bulkhead (Cell 구조물의 변형특성에 미치는 셀 벽면 마찰의 영향)

  • Son, Dae-San;Jang, Jeong-Wook;Kim, Kyong-Yeol;Kim, Hyun-Guk;Chung, Youn-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.230-234
    • /
    • 2010
  • This study examined the effect of wall friction on deformation characteristics of the cellular bulkhead, in terms of artificial wall friction based on the results of model tests according to the existing penetration ratio and loading height. 1. The effect of wall friction on deformation characteristics of the cellular bulkhead turned out to be less as the loading height decreases and the penetration ratio increases. The yield load also becomes less as wall friction decreases. 2. The ratio of the rotational displacement to the horizontal displacement of the cellular bulkhead becomes less as the loading height decreases and the penetration ratio increases. Hence it is concluded that the effect of wall friction has close relationship with the rotational displacement.