Browse > Article

The Effect of Wall Friction on Deformation Characteristics of the Cellular Bulkhead  

Son, Dae-San (Department of Civil Engineering, Changwon National University)
Jang, Jeong-Wook (Department of Civil Engineering, Changwon National University)
Kim, Kyong-Yeol (Water Conter and Disaster Prevention Division, The provincial office of Kyung-Nam)
Kim, Hyun-Guk (Department of Civil Engineering, Changwon National University)
Chung, Youn-In (Department of Civil Engineering, Keimyung University)
Publication Information
Journal of Korean Society of Coastal and Ocean Engineers / v.22, no.4, 2010 , pp. 230-234 More about this Journal
Abstract
This study examined the effect of wall friction on deformation characteristics of the cellular bulkhead, in terms of artificial wall friction based on the results of model tests according to the existing penetration ratio and loading height. 1. The effect of wall friction on deformation characteristics of the cellular bulkhead turned out to be less as the loading height decreases and the penetration ratio increases. The yield load also becomes less as wall friction decreases. 2. The ratio of the rotational displacement to the horizontal displacement of the cellular bulkhead becomes less as the loading height decreases and the penetration ratio increases. Hence it is concluded that the effect of wall friction has close relationship with the rotational displacement.
Keywords
cellular bulkhead; model test; wall friction; penetration ratio; loading height;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schneebeli, C. (1957). Contribution au Calcul de la Stabilite des Batardeaux a Double Paroi de Palplanches, Proceedings, 4th I.C.S.M.F.E.
2 Terzaghi, K. (1945). Stability and Stiffness of Cellular Cofferdams, Transaction, ASCE, Vol.110.
3 Hansen, J.B. (1953). Earth Pressure Calculation, The Danish Technical Press, The Institution of Danish Civil Engineers Copenhagen.
4 Krynine, D.P. (1945). Discussion on Stability and Stiffness of Cellular Cofferdams, Transaction, ASCE, Vol.110.
5 Cummings, E.M. (1960). Cellular Cofferdams and Docks, Transaction, ASCE, Vol.125.
6 장정욱 (1995). 근입깊이에 따른 채움재의 활동면에 관한 연구, 청주대학교 산업과학 연구 제 13권, PP.198-200, 청주대학교 산업과학연구소.
7 장정욱 (1996). 재하높이와 근입장이 Cell 구조물의 변형특성에 미치는 영향, 청주대 산업과학연구 제 14권, PP.1-7, 청주대학교 산업과학연구소.
8 정중화 (2006). 셀 구조물의 변형특성에 대한 해석적 연구, 창원대학교 산업대학원 석사학위논문.
9 손대산 (2007). 벽면마찰을 고려한 Cell 구조물의 변형특성, 창원대학교 대학원 석사학위논문.
10 민병형, 옥치율, 민일규 공저 (1999). 항만공학, 형설출판사.
11 박상길 (1996). 항만해양구조물의 설계, 新技術.
12 박용명, 오성남 (1997). 호안조성용 거치식 강판셀공법의 실험적 연구, 한국강구조학회 논문집 Vol.9 No.2, PP.250.
13 장정욱 (1997). 강제원통케이슨의 수평거동에 관한 이론적 해석, 청주대학교 산업과학 연구 제 15권, PP.118, 청주대학교 산업과학연구소.