• Title/Summary/Keyword: Penalty Function

Search Result 294, Processing Time 0.022 seconds

A convenient approach for penalty parameter selection in robust lasso regression

  • Kim, Jongyoung;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.651-662
    • /
    • 2017
  • We propose an alternative procedure to select penalty parameter in $L_1$ penalized robust regression. This procedure is based on marginalization of prior distribution over the penalty parameter. Thus, resulting objective function does not include the penalty parameter due to marginalizing it out. In addition, its estimating algorithm automatically chooses a penalty parameter using the previous estimate of regression coefficients. The proposed approach bypasses cross validation as well as saves computing time. Variable-wise penalization also performs best in prediction and variable selection perspectives. Numerical studies using simulation data demonstrate the performance of our proposals. The proposed methods are applied to Boston housing data. Through simulation study and real data application we demonstrate that our proposals are competitive to or much better than cross-validation in prediction, variable selection, and computing time perspectives.

OPTIMAL PROBLEM FOR RETARDED SEMILINEAR DIFFERENTIAL EQUATIONS

  • Park, Dong-Gun;Jeong, Jin-Mun;Kang, Weon-Kee
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.317-332
    • /
    • 1999
  • In this paper we deal with the optimal control problem for the semilinear functional differential equations with unbounded delays. We will also establish the regularity for solutions of the given system. By using the penalty function method we derive the optimal conditions for optimality of an admissible state-control pairs.

  • PDF

A compound Poisson risk model with variable premium rate

  • Song, Mi Jung;Kim, Jongwoo;Lee, Jiyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1289-1297
    • /
    • 2012
  • We consider a general compound Poisson risk model in which the premium rate is surplus dependent. We analyze the joint distribution of the surplus immediately before ruin, the deffcit at ruin and the time of ruin by solving the integro-differential equation for the Gerber-Shiu discounted penalty function.

A Comparative Study for Incompressibility of Rigid Plastic Finite Element Method (강소성 유한요소법에서 비압축성조건에 관한 비교 연구)

  • 이상재;조종래;배원병;김영호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.40-44
    • /
    • 1997
  • The governing functional in plastic deformation has to satisfy the incompressible condition. This incompressible condition imposed on the velocity fields can be removed by introducing either the Langrange multiplier or the penalty function into the functional. In the study two-dimensional rigid plastic FEM programs using by Lagrange multiplier and penalty function are developed. A compression of cylinder and a spike forging are simulated to compare the data of loads, local mean stresses and reductions of volume.

  • PDF

A Comparative Study for Incompressibility of Rigid Plastic Finite Element Method (강소성 유한요소법에서 비압축성조건에 관한 비교 연구)

  • 이상재;조종래;배원병;김영호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.57-61
    • /
    • 1997
  • The governing functional in plastic deformation has to satisfy the incompressible condition. This incompressible condition imposed on the velocity fields can be removed by introducing either the Langrange multiplier or the penalty function into the functional. In this study two-dimensional rigid plastic FEM programs using by Langrange multiplier and penalty function are developed. A compression of cylinder and a spike forging are simulated to compare the data of loads, local mean stresses and reductions of volume.

  • PDF

A Fuzzy Intelligent Cruise Controller using a Self-tuning Method (자기 조절 기능을 갖는 퍼지 지능 순항 제어기 개발)

  • Lee, Gu-Do;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.499-503
    • /
    • 1997
  • In this paper, we present a fuzzy ICC using a self-tuning method. To provide robustness and adaptiveness over the vehicle nonlinearities and changes of the driving environments, an on-line self-tuning scheme based on 'Interior Penalty Function' was developed. Road test and computer simulation results verify the feasible performance of the suggested ICC algorithm.

  • PDF

Element Free Galerkin Method applying Penalty Function Method

  • Choi, Yoo Jin;Kim, Seung Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.1-34
    • /
    • 1997
  • In this study, various available meshless methods are briefly reviewed and the connection among them is investigated. The objective of meshless methods is to eliminate some difficulties which are originated from reliance on a mesh by constructing the approximation entirely in terms of nodes. Especially, focusing on Element Free Galerkin Method(EFGM) based on moving least square interpolants(MLSI), a new implementation is developed based on a variational principle with penalty function method were used to enforce the essential boundary condition. In addition, the weighted orthogonal basis functions are constructed to overcome disadvantage of MLSI.

  • PDF

Flow Shop Scheduling Problems By using Y-Shape Property ("V-shape"를 이용한 흐름작업 일정계획)

  • 노인규;이정환
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.23
    • /
    • pp.65-70
    • /
    • 1991
  • This paper is concerned with a flow-shop scheduling problem for all jobs having the common due date using V-Shape penalty cost function for earliness and lateness. The objective of the paper is to develop an efficient heuristic scheduling algorithm for minimizing total penalty cost function and for determining the optimal common due date. In addition, the between-job-delay for two machines are considered for developing the algorithm. A numerical example is given for illustrating the proposed algorithm.

  • PDF

ON THE GLOBAL CONVERGENCE OF A MODIFIED SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS

  • Liu, Bingzhuang
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1395-1407
    • /
    • 2011
  • When a Sequential Quadratic Programming (SQP) method is used to solve the nonlinear programming problems, one of the main difficulties is that the Quadratic Programming (QP) subproblem may be incompatible. In this paper, an SQP algorithm is given by modifying the traditional QP subproblem and applying a class of $l_{\infty}$ penalty function whose penalty parameters can be adjusted automatically. The new QP subproblem is compatible. Under the extended Mangasarian-Fromovitz constraint qualification condition and the boundedness of the iterates, the algorithm is showed to be globally convergent to a KKT point of the non-linear programming problem.

Finite Element Analysis with Paraxial Boundary Condition (파진행 문제를 위한 Paraxial 경계조건의 유한요소해석)

  • Kim, Hee-Seok;Lee, Jong-She
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.303-309
    • /
    • 2007
  • For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. In this paper we focus on both first and second order paraxial boundary conditions(PBCs) in the framework of variational approximations which are based on paraxial approximations of the scalar and elastic wave equations. We propose a penalty function method for the treatment of PBCs and apply these into finite element analysis. The numerical verification of the efficiency is carried out through comparing PBCs with Lysmer-Kuhlemeyer's boundary conditions.