• Title/Summary/Keyword: Pell sequence

Search Result 6, Processing Time 0.015 seconds

The Exponential Representations of Pell and Its Generalized Matrix Sequences

  • Sukran Uygun
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.3
    • /
    • pp.395-405
    • /
    • 2024
  • In this paper we define a matrix sequence called the Pell matrix sequence whose elements consist of Pell numbers. Using a positive parameter k, we generalize the Pell matrix sequence to a k-Pell matrix sequence and using two parameters s, t we generalize them to (s, t)-Pell matrix sequences. We give the basic properties of these matrix sequences. Then, using these properties we obtain exponential representations of the Pell matrix sequence and its generalizations in different ways.

New Approach to Pell and Pell-Lucas Sequences

  • Yagmur, Tulay
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • In this paper, we first define generalizations of Pell and Pell-Lucas sequences by the recurrence relations $$p_n=2ap_{n-1}+(b-a^2)p_{n-2}\;and\;q_n=2aq_{n-1}+(b-a^2)q_{n-2}$$ with initial conditions $p_0=0$, $p_1=1$, and $p_0=2$, $p_1=2a$, respectively. We give generating functions and Binet's formulas for these sequences. Also, we obtain some identities of these sequences.

GENERALIZED PELL SEQUENCES RELATED TO THE EXTENDED GENERALIZED HECKE GROUPS ${\bar{H}}$ 3,q AND AN APPLICATION TO THE GROUP ${\bar{H}}$ 3,3

  • Birol, Furkan;Koruoglu, Ozden;Sahin, Recep;Demir, Bilal
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.197-206
    • /
    • 2019
  • We consider the extended generalized Hecke groups ${\bar{H}}_{3,q}$ generated by $X(z)=-(z-1)^{-1}$, $Y(z)=-(z+{\lambda}_q)^{-1}$ with ${\lambda}_q=2\;cos({\frac{\pi}{q}})$ where $q{\geq}3$ an integer. In this work, we study the generalized Pell sequences in ${\bar{H}}_{3,q}$. Also, we show that the entries of the matrix representation of each element in the extended generalized Hecke Group ${\bar{H}}_{3,3}$ can be written by using Pell, Pell-Lucas and modified-Pell numbers.

ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS

  • Bravo, Jhon J.;Gomez, Carlos A.;Herrera, Jose L.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.535-547
    • /
    • 2019
  • In this paper, by using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and $Peth{\ddot{o}}$, we find all generalized Fibonacci numbers which are Pell numbers. This paper continues a previous work that searched for Pell numbers in the Fibonacci sequence.

FIBONACCI SEQUENCES IN kTH POWER RESIDUES

  • Chung, Youchan;Jang, Eunyool;Park, Jinseo;Park, Sanghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.327-334
    • /
    • 2021
  • In this paper, we find all the prime numbers p that satisfy the following statement. If a positive integer k is a divisor of p - 1, then there is a sequence consisting of all k-th power residues modulo p, satisfying the recurrence equation of the Fibonacci sequence modulo p.