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Abstract. In this paper, we first define generalizations of Pell and Pell-Lucas sequences
by the recurrence relations

pn = 2apn−1 + (b− a2)pn−2 and qn = 2aqn−1 + (b− a2)qn−2

with initial conditions p0 = 0, p1 = 1, and q0 = 2, q1 = 2a, respectively. We give generat-

ing functions and Binet’s formulas for these sequences. Also, we obtain some identities of

these sequences.

1. Introduction

Due partly to their innumerable applications in not only the field of science, but
also of art and literature, there have been many studies on special number sequences
such as Fibonacci, Lucas, Pell, Jacobsthal, Fermat, Mersenne. In particular, there
have been many studies on Fibonacci and Lucas sequences, and their generaliza-
tions. For a small sample of these studies, one can see [1, 2, 4, 6, 9]. Although
to a lesser extent, Pell and Pell-Lucas sequences have also been well studied and
generalized by many authors. Some examples of these studies can be found in [3,
5, 7, 8].

Fibonacci {Fn}∞n=0 and Lucas {Ln}∞n=0 sequences are defined by the recurrence
relations Fn = Fn−1 + Fn−2 with initial conditions F0 = 0, F1 = 1, and Ln =
Ln−1 +Ln−2 with initial conditions L0 = 2 and L1 = 1, respectively. Similarly, Pell
{Pn}∞n=0 and Pell-Lucas {Qn}∞n=0 sequences are defined recursively by the relations
Pn = 2Pn−1+Pn−2 with initial conditions P0 = 0, P1 = 1, and Qn = 2Qn−1+Qn−2
with initial conditions Q0 = 2, Q1 = 2, respectively.

In [1], Bilgici gave generalizations for Fibonacci and Lucas sequences as follows:

f0 = 0, f1 = 1 fn = 2afn−1 + (b− a2)fn−2 (n ≥ 2)

l0 = 2, l1 = 2a ln = 2aln−1 + (b− a2)ln−2 (n ≥ 2)
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where a and b are any nonzero real numbers.

The main objective of this study is to give new generalizations for Pell and Pell-
Lucas sequences, in much the same way that Bilgici did for Fibonacci and Lucas
sequences in [1]. We shall then determine generating functions and Binet’s formu-
las, and give well-known Catalan’s, Cassini’s and d’Ocagne’s identities for these
generalized sequences. In addition, some identities of these generalized sequences
and some relations between these two generalized sequences are given.

2. Generalized Pell and Pell-Lucas Sequences

In this section, we define generalizations of Pell and Pell-Lucas sequences. Then,
we give generating functions and Binet’s formulas for these generalized sequences.

Definition 2.1. For any real nonzero numbers a and b, the generalized Pell sequence
{pn}∞n=0 and the generalized Pell-Lucas sequence {qn}∞n=0 are defined recursively,
for n ≥ 2, by

pn = 2apn−1 + (b− a2)pn−2,(2.1)

qn = 2aqn−1 + (b− a2)qn−2(2.2)

with initial conditions p0 = 0, p1 = 1, and q0 = 2, q1 = 2a, respectively.

It is obvious that, in Eq. (2.1) and (2.2), if we take respectively

(1) a = 1, b = 2, we obtain classical Pell and Pell-Lucas sequences,

(2) a = 1
2 , b = 5

4 , we obtain classical Fibonacci and Lucas sequences,

(3) a = 1
2 , b = 9

4 , we obtain classical Jacobsthal and Jacobsthal-Lucas sequences,

(4) a = 3
2 , b = 1

4 , we obtain Mersenne and Fermat sequences.

The following theorem gives us generating functions for generalized Pell and
Pell-Lucas sequences :

Theorem 2.2. The generating functions of the generalized Pell sequence {pn}∞n=0

and the generalized Pell-Lucas sequence {qn}∞n=0 are given, respectively, by

p(x) = x
1−2ax−(b−a2)x2 and q(x) = 2−2ax

1−2ax−(b−a2)x2 .

Proof. The generating functions p(x) and q(x) can be written as p(x) =
∑∞
n=0 pnx

n

and q(x) =
∑∞
n=0 qnx

n. Then, we write
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p(x) =

∞∑
n=0

pnx
n = p0 + p1x+

∞∑
n=2

pnx
n

= x+ 2a

∞∑
n=2

pn−1x
n + (b− a2)

∞∑
n=2

pn−2x
n

= x+ 2ax

∞∑
n=0

pnx
n + (b− a2)x2

∞∑
n=0

pnx
n

= x+ 2axp(x) + (b− a2)x2p(x).

Thus, we obtain

(1− 2ax− (b− a2)x2)p(x) = x.

Hence, we have

p(x) =
x

1− 2ax− (b− a2)x2
.

Similarly, we have

q(x) =

∞∑
n=0

qnx
n = q0 + q1x+

∞∑
n=2

qnx
n

= 2 + 2ax+ 2a

∞∑
n=2

qn−1x
n + (b− a2)

∞∑
n=2

qn−2x
n

= 2− 2ax+ 2ax

∞∑
n=0

qnx
n + (b− a2)x2

∞∑
n=0

qnx
n

= 2− 2ax+ 2axq(x) + (b− a2)x2q(x).

Thus, we obtain

q(x) =
2− 2ax

1− 2ax− (b− a2)x2
. 2

We now give Binet’s formulas for the generalized Pell and Pell-Lucas sequences
by the following:

Theorem 2.3. The nth terms of the generalized Pell and Pell-Lucas sequences
are given by

pn = αn−βn

α−β and qn = αn + βn
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where α = a+
√
b and β = a−

√
b are the roots of the equation x2−2ax−(b−a2) = 0.

Proof. Using the partial fraction decomposition, p(x) and q(x) can be expressed as

p(x) = − 1
2
√
b

1
αx−1 + 1

2
√
b

1
βx−1 and q(x) = − 1

αx−1 −
1

βx−1 .

However, note that, α+ β = 2a , α− β = 2
√
b and αβ = a2 − b.

Then, we have

p(x) =

∞∑
n=0

pnx
n =

1

2
√
b

1

1− αx
− 1

2
√
b

1

1− βx

=
1

2
√
b

∞∑
n=0

(αn − βn)xn

=

∞∑
n=0

αn − βn

α− β
xn.

Also

q(x) =

∞∑
n=0

qnx
n =

1

1− αx
+

1

1− βx

=

∞∑
n=0

(αn + βn)xn.

Inspecting the above expressions, we get the following:

pn = αn−βn

α−β and qn = αn + βn. 2

The following corollary is also consequence of Theorem 2.3:

Corollary 2.4. Let n be any integer. Then,

p−n = −(a2 − b)−npn and q−n = (a2 − b)−nqn.

3. Some Identities on Generalized Pell and Pell-Lucas Sequences

In this section, we give well-known identities Catalan’s, Cassini’s and d’Ocagne’s
for the generalized Pell and Pell-Lucas sequences. Also, we investigate some name-
less identities of these generalized sequences, and give some relations between these
sequences.

Theorem 3.1.(Catalan’s Identity) For any integers n and r, we have

pn+rpn−r − pn
2 = −(a2 − b)n−rpr2,

qn+rqn−r − qn
2 = (a2 − b)n−r4bpr2.
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Proof. Using Binet’s formula of the generalized Pell sequence, we write

pn+rpn−r − pn
2 =

αn+r − βn+r

α− β
αn−r − βn−r

α− β
− (

αn − βn

α− β
)2

= − 1

(α− β)2
(αβ)n−r(α2r + β2r − 2αrβr)

= −(αβ)n−r(
αr − βr

α− β
)2.

Thus, we obtain

pn+rpn−r − pn
2 = −(a2 − b)n−rpr2.

Using Binet’s formula of the generalized Pell-Lucas sequence, the second identity
can be proved in a similar manner. 2

Taking r = 1 in Theorem 3.1, we obtain the following:

Corollary 3.2.(Cassini’s Identity) For every integer n, we have

pn+1pn−1 − pn
2 = −(a2 − b)n−1,

qn+1qn−1 − qn
2 = 4b(a2 − b)n−1.

Theorem 3.3.(d’Ocagne’s Identity) Let m and n be any integers. Then,

pmpn+1 − pnpm+1 = (a2 − b)npm−n,
qmqn+1 − qnqm+1 = −2(b)

1
2 (a2 − b)n(αm−n − βm−n).

Proof. Using Binet’s formula of the generalized Pell sequence, we write

pmpn+1 − pnpm+1 =
αm − βm

α− β
αn+1 − βn+1

α− β
− αn − βn

α− β
αm+1 − βm+1

α− β

=
−αmβn+1 − βmαn+1 + αnβm+1 + βnαm+1

(α− β)2

=
αmβn − αnβm

α− β

= (αβ)n
αm−n − βm−n

α− β
.

Thus, we obtain

pmpn+1 − pnpm+1 = (a2 − b)npm−n.

The second statement of the theorem can be proved similarly. 2
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Theorem 3.4. Let n be any integer. Then,

4bpn = (b− a2)qn−1 + qn+1,

qn = (b− a2)pn−1 + pn+1.

Proof. Using Binet’s formula of the generalized Pell-Lucas sequence, we write

(b− a2)qn−1 + qn+1 = −αβ(αn−1 + βn−1) + (αn+1 + βn+1)

= αn(α− β) + βn(β − α)

= (α− β)2
αn − βn

α− β
= 4bpn.

This proves the first identity. The second identity can be proved in a similar
manner. 2

Theorem 3.5. Let m and n be any integers. Then,

pm+n =
1

2
(pmqn + pnqm),

qm+n = 2bpmpn +
1

2
qmqn.

Proof. Using Binet’s formulas of the generalized Pell and Pell-Lucas sequences, the

theorem can be proved easily. 2

Taking n = −n in Theorem 3.5 and using Corollary 2.4, we obtain the following:

Corollary 3.6. For any integers m and n, we have

pm−n =
1

2
(a2 − b)−n(pmqn − pnqm),

qm−n =
1

2
(a2 − b)−n(qmqn − 4bpmpn).

The consequence of the above is the following:

Corollary 3.7. Let n be any integer. Then,

pn−1 =
1

b− a2
(
1

2
qn − apn),

qn−1 =
1

b− a2
(2bpn − aqn).

From the second identity in Corollary 3.6, we obtain the following:
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Corollary 3.8. For every integer n, we have

qn
2 − 4bpn

2 = 4(a2 − b)n.

Setting m = n in Theorem 3.5, it is easy to see the following:

Corollary 3.9. Let n be any integer. Then,

p2n = pnqn,

q2n = 2bp2n +
1

2
q2n.

The following corollary follows from Corollary 3.8 and 3.9:

Corollary 3.10. For any integer n, we have

q2n = q2n − 2(a2 − b)n.

If we take m = 1 in Theorem 3.5, we have the following:

Corollary 3.11. For every integer n, we have

pn+1 = apn +
1

2
qn,

qn+1 = aqn + 2bpn.

Theorem 3.12. Let m and n be any integers. Then,

pm+n = pmpn+1 − (a2 − b)pm−1pn,
pm+n = pmqn − (a2 − b)npm−n,
pm−n = (a2 − b)1−n[pm−1pn − pmpn−1].

Proof. Using Binet’s formula of the generalized Pell sequence, we write

pmpn+1 − (a2 − b)pm−1pn =
αm − βm

α− β
αn+1 − βn+1

α− β
− αβα

m−1 − βm−1

α− β
αn − βn

α− β

=
1

(α− β)2
[αm+n(α− β) + βm+n(β − α)]

=
αm+n − βm+n

α− β
= pm+n.

This completes the proof of the first identity in theorem. Setting n = −n in the
first identity, the last identity can be obtained. The second identity can be proved
in a similar manner. 2
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Theorem 3.13. Let m and n be any integers. Then,

pmpn =
1

4b
[qm+n − (a2 − b)nqm−n],

qmqn = qm+n + (a2 − b)nqm−n,
pmqn = pm+n + (a2 − b)npm−n.

Proof. Using Binet’s formulas of the generalized Pell and Pell-Lucas sequences, we
write

pmqn =
αm − βm

α− β
(αn + βn)

=
αm+n − βm+n

α− β
+
αmβn − βmαn

α− β

=
αm+n − βm+n

α− β
+ (αβ)n

αm−n − βm−n

α− β
= pm+n + (a2 − b)npm−n.

This completes the proof of the last identity. The others can be proved similarly. 2

Theorem 3.14. For any integers m and n, we have

qn = qmpn−m+1 + (b− a2)qm−1pn−m.

The theorem can be proved easily using Binet’s formulas of the generalized Pell
and Pell-Lucas sequences.

Theorem 3.15. Let m and n be any integers. Then,

p2mp2n =
1

4b
[q2m+n − (a2 − b)2nq2m−n],

p2mp2n = p2m+n − (a2 − b)2np2m−n,
q2mq2n = 4bp2m+n + (a2 − b)2nq2m−n,
q2mq2n = q2m+n + 4b(a2 − b)2np2m−n.

Proof. Using Binet’s formula of the generalized Pell-Lucas sequence, we write

1

4b
[q2m+n − (a2 − b)2nq2m−n] =

1

4b
[(αm+n + βm+n)2 − (αβ)2n(αm−n + βm−n)2]

=
α2m+2n + β2m+2n − α2mβ2n − β2mα2n

4b
.

On the other hand, from Binet’s formula of the generalized Pell sequence, we get

p2mp2n =
α2m − β2m

α− β
α2n − β2n

α− β

=
α2m+2n + β2m+2n − α2mβ2n − β2mα2n

4b
.
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Hence, we obtain

p2mp2n =
1

4b
[q2m+n − (a2 − b)2nq2m−n].

Similarly,

p2m+n − (a2 − b)2np2m−n = (
αm+n − βm+n

α− β
)2 − (αβ)2n(

αm−n − βm−n

α− β
)2

=
α2m+2n + β2m+2n − α2mβ2n − β2mα2n

4b
= p2mp2n.

The others can be proved in a similar manner. 2

Theorem 3.16. Let n be any integer. Then,

pnpn+1 =
1

4b
[q2n+1 − 2a(a2 − b)n],

qnqn+1 = q2n+1 + 2a(a2 − b)n,
pn−1pn+1 = p2n − (a2 − b)n−1.

Proof. Using Binet’s formula of the generalized Pell sequence, we write

pn−1pn+1 =
αn−1 − βn−1

α− β
αn+1 − βn+1

α− β

=
α2n + β2n − (αβ)n−1(α2 + β2)

(α− β)2

= (
αn − βn

α− β
)2 − (αβ)n−1

= p2n − (a2 − b)n−1.

This completes the last identity. The others can be proved similarly. 2

Theorem 3.17. For every integer n, we have

qnqn+2 − 4bpn−1pn+3 = (a2 − b)n−14a2(a2 + 3b).

Proof. Using Binet’s formulas of the generalized Pell and Pell-Lucas sequences, we
write

qnqn+2 − 4bpn−1pn+3 = (αn + βn)(αn+2 + βn+2)

− (α− β)2
αn−1 − βn−1

α− β
αn+3 − βn+3

α− β

= (αβ)n+1(
β

α
+
α

β
+
β2

α2
+
α2

β2
)

= (αβ)n−1(α+ β)2(α2 − αβ + β2).
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Considering α = a+
√
b and β = a−

√
b, we obtain desired result. 2

Theorem 3.18. Let n be any integer. Then,

p4n+1 − (a2 − b)2n = q2n+1p2n,

p4n+3 − (a2 − b)2n+1 = q2n+1p2n+2.

Proof. Using Binet’s formulas of the generalized Pell and Pell-Lucas sequences, we
write

q2n+1p2n = (α2n+1 + β2n+1)
α2n − β2n

α− β

=
α4n+1 − β4n+1

α− β
+
β2n+1α

2n − α2n+1β2n

α− β
= p4n+1 − (αβ)2n

= p4n+1 − (a2 − b)2n.

This completes the proof of the first identity. The proof of the second identity can
be done in a similar manner. 2

Theorem 3.19. For any integer n, we have

q2n −
1

a2 − b
q2n+1 = q2n −

1

a2 − b
q2n+2.

Proof. The theorem can be proved easily using Binet’s formula of the generalized
Pell-Lucas sequence. 2

Theorem 3.20. Let m and n be any integers. Then,

pmn = qmpm(n−1) − (a2 − b)mpm(n−2),

qmn = qmqm(n−1) − (a2 − b)mqm(n−2).

Proof. Using Binet’s formulas of the generalized Pell and Pell-Lucas sequences, we
write

qmpm(n−1) − (a2 − b)mpm(n−2) = (αm + βm)
αmn−m − βmn−m

α− β

− (αβ)m
αmn−2m − βmn−2m

α− β

=
αmn − βmn

α− β
= pmn.

This completes the proof of the first identity. The second identity is just as easy. 2
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Theorem 3.21. Let n be any integer. Then,

p2n+1 = (b− a2)p2n + p2n+1,

p2n+1 =
1

b− a2
[pn+1qn+2 − 2apn+2qn + (a2 − b)n(5a2 − b)].

Proof. Using Binet’s formula of the generalized Pell sequence, we write

(b− a2)p2n + p2n+1 = −αβ(
αn − βn

α− β
)2 + (

αn+1 − βn+1

α− β
)2

=
1

(α− β)2
[α2n+1(α− β)− β2n+1(α− β)]

=
α2n+1 − β2n+1

α− β
= p2n+1.

Also from Binet’s formulas of the generalized Pell and Pell-Lucas sequences, we get

1

b− a2
[pn+1qn+2 − 2apn+2qn + (a2 − b)n(5a2 − b)]

=
1

−αβ
αn+1 − βn+1

α− β
(αn+2 + βn+2) +

α+ β

αβ

αn+2 − βn+2

α− β
(αn + βn)

+
(a2 − b)n

b− a2
(5a2 − b)

=
1

α− β
(α2n+1 − β2n+1) +

(αβ)n(α− β)

α− β
[1 +

(α+ β)2

αβ
]

+
(a2 − b)n

b− a2
(5a2 − b)

=
α2n+1 − β2n+1

α− β
= p2n+1.

Hence, the proof is completed. 2

Theorem 3.22. Let m and n be any integers. Then,

p3n = pnq2n + (a2 − b)npn,
p3n = p2nqn − (a2 − b)npn,
q3n = qnq2n − (a2 − b)nqn,

p2m+n = pmqm+n + (a2 − b)mpn,
q2m+n = qmqm+n − (a2 − b)mqn.
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The theorem can be proved easily using Binet’s formulas of the generalized Pell
and Pell-Lucas sequences.

We would also like to point out that, if we take a = 1, b = 2 in the most of these
theorems and corollaries, we obtain known identities of classical Pell and Pell-Lucas
sequences.
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