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Abstract. In this paper we define a matrix sequence called the Pell matrix sequence

whose elements consist of Pell numbers. Using a positive parameter k, we generalize the

Pell matrix sequence to a k-Pell matrix sequence and using two parameters s, t we gen-

eralize them to (s, t)-Pell matrix sequences. We give the basic properties of these matrix

sequences. Then, using these properties we obtain exponential representations of the Pell

matrix sequence and its generalizations in different ways.

1. Introduction and Preliminaries

Sequences of positive integers have long been studied and many special integer
sequences are known to have applications in different areas of science. Many re-
searchers devote their attention to special sequences, such a Pell, Pell-Lucas, and
Modified Pell sequences, which satisfy a second-order recurrence relation. Horadam
studied various properties of Pell numbers and Pell polynomials. Ercolano found
generating matrices for Pell sequences. Many mathematicians have looked at gen-
eralizations of Pell sequences one gets by adding one or two parameters to the
recursion relation but not altering the initial conditions. Identities and generalting
functions for the k-Pell numbers were established in [3]. The authors of [2] investi-
gated (s, t)-Pell and (s, t)-Pell-Lucas sequences and their matrix representations. In
[4], (s, t)-Pell and Pell-Lucas numbers are studied using matrix methods. In [5], the
exponential representations of the Jacobsthal matrix sequences were found. In this
paper we give the definitions of Pell sequence and its parametrized generalizations.
Using the elements of the sequence, we establish matrix sequences for the integer
sequences. We demonstrate the exponential matrices for the Pell matrix sequence
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and its generalizations by various methods.
As seen [1, 6], the recurrence relation with initial conditions for the Pell sequence

is given as

pn = 2pn−1 + pn−2, p0 = 0 and p1 = 1, n ≥ 2.

The characteristic equation for the recurrence relation of the Pell sequence is

x2 − 2x− 1 = 0

with roots r1 = 1 +
√
2 and r2 = 1 −

√
2. It is easily seen that r1 + r2 =

2, r1r2 = −1 and r1 − r2 = 2
√
2. The Binet formula for showing Pell numbers as

a function of the roots r1, r2 is established as

(1.1) pn =
rn1 − rn2
r1 − r2

.

The sequence can be generalized using one parameter k, which is any positive
integer. The k-Pell sequence {pk,n}n∈N in [3] is demonstrated by

pk,n = 2pk,n−1 + kpk,n−2, pk,0 = 0 and pk,1 = 1, n ≥ 2.

It has the characteristic equation

x2 − 2x− k = 0

with roots

rk,1 = 1 +
√
1 + k and rk,2 = 1−

√
1 + k.

So, the following properties are established

(1.2) rk,1rk,2 = −k, rk,1 + rk,2 = 2, rk,1 − rk,2 = 2
√
1 + k.

The Binet formula for the k-Pell sequence with roots rk,1 and rk,2 is given by

(1.3) pk,n =
rnk,1 − rnk,2
rk,1 − rk,2

.

As established in [4, 5], the two-parameter Pell sequence (s, t) -Pell sequence
{pn(s, t)}n∈N is obtained by the following recurrence relation

pn (s, t) = 2spn−1 (s, t) + tpn−2 (s, t) , p0(s, t) = 0, p1(s, t) = 1, n ≥ 2,

where s, t are real numbers such that s > 0, t ̸= 0 and s2+ t > 0. The characteristic
equation of this recurrence relation is

x2 − 2sx− t = 0
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with roots r1(s, t) = s+
√
s2 + t and r2(s, t) = s−

√
s2 + t. The roots satisfy the

relations:

(1.4)

r1(s, t)r2(s, t) = −t, r1(s, t) + r2(s, t) = 2s , r1(s, t)− r2(s, t) = 2
√
s2 + t.

The Binet formula for (s, t)-Pell numbers with the roots r1(s, t), r2(s, t) is given by

(1.5) pn (s, t) =
rn1 (s, t)− rn2 (s, t)

r1(s, t)− r2(s, t)
.

2. Pell and Its Generalized Matrix Sequences

The Pell matrix sequence {Pn}n∈N is defined in [2] by the recurrence relation

(2.1) Pn+1 = 2Pn + Pn−1, P0 =

(
1 0
0 1

)
, P1 =

(
2 1
1 0

)
.

The elements of Pell matrix sequence are the elements of Pell sequence such that

Pn =

(
pn+1 pn
pn pn−1

)
.

The k-Pell matrix sequence {Pk,n}n∈N is established by

(2.2) Pk,n+1 = 2Pk,n + kPk,n−1, Pk,0 =

(
1 0
0 1

)
, Pk,1 =

(
2 1
k 0

)
.

The elements of k-Pell matrix sequence are the elements of k-Pell sequence such
that

Pk,n =

(
pk,n+1 pk,n
kpk,n kpk,n−1

)
.

The (s, t)-Pell matrix sequence {Pn(s, t)}n∈N is defined in [4, 5] by
(2.3)

Pn+1 (s, t) = 2sPn (s, t)+tPn−1 (s, t) , P0 (s, t) =

(
1 0
0 1

)
, P1 (s, t) =

(
2s 1
t 0

)
.

The elements of (s, t)-Pell matrix sequence are the elements of (s, t)-Pell sequence
such that

Pn (s, t) =

(
pn+1 (s, t) pn (s, t)
tpn (s, t) tpn−1 (s, t)

)
.

Lemma 2.1. Assume s, t are real numbers such that s, t > 0, t ̸= 0, n ≥ 1 an
integer, k any positive integer, the following identities hold:

Pn = Pn
1 , Pk,n = Pn

k,1, Pn (s, t) = Pn
1 (s, t) .
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Proof. The proof is made by induction method. We want to prove the last equality

that Pn (s, t) = Pn
1 (s, t) . For n = 1, it is easily seen that the assumption is

true. Assume that Pk (s, t) = P k
1 (s, t) is true for k ≤ n. We want to seek for the

assumption is valid for k = n+ 1:

Pn+1
1 (s, t) = Pn

1 (s, t)P1 (s, t) = Pn (s, t)P1 (s, t)

=

(
pn+1 (s, t) pn (s, t)
tpn (s, t) tpn−1 (s, t)

)(
2s 1
t 0

)
=

(
2spn+1 (s, t) + tpn (s, t) pn+1 (s, t)

tpn+1 (s, t) tpn (s, t)

)
= Pn+1 (s, t) .

If we choose s = t = 1 in this equality, we get the first equality.

Similarly, If we choose s = 1, t = k, we get the second equality. 2

Lemma 2.2. Assume s, t are real numbers such that s, t > 0, t ̸= 0 and n ≥ 1 an
integer, k any positive integer, the following identities hold:

Pm+n = PmPn, Pk,m+n = Pk,mPk,n, Pm+n (s, t) = Pm (s, t)Pn (s, t) .

Proof. The proof is made by induction method. We want to prove the second

equality that Pk,m+n = Pk,mPk,n. For n = 0, it is easily seen that the assumption
is true. Assume that Pk,m+i = Pk,mPk,i is true for i ≤ n. We want to seek for the
assumption is valid for i = n+ 1:

Pk,m+n+1 = 2Pk,m+n + kPk,m+n−1 = 2Pk,mPk,n + kPk,mPk,n−1

= Pk,m(2Pk,n + kPk,n−1) = Pk,mPk,n+1.

The other proofs are made by using the same procedure.

3. The Exponential Representations of Pell Matrix Sequences

In this section, we want to present the exponential representations of the nth
element of Pell matrix sequence and the nth element of generalized Pell matrix
sequences. If a function f(z) of a complex variable z has a Maclaurin series expan-

sion f(z) =
∞∑
k=0

akz
k which converges for |z| ≺ R, then the matrix series

∞∑
k=0

akA
k

converges, provided A is square and each of its eigenvalues has absolute value less

than R. In such a case, f(A) is defined as f(A) =
∞∑
k=0

akA
k .

Theorem 3.1. For any integer n ≥ 0, the exponential representation of the nth
element of (s, t)-Pell matrix sequence is in the following form:

ePn(s,t) = −(−t)n
∞∑
k=0

pnk−n(s, t)

pn(s, t)k!
I2 +

∞∑
k=0

pnk(s, t)

pn(s, t)k!
Pn
1 (s, t)
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where I2 is the identity matrix and pn(s, t) is defined in [4]. The theorem gives
us the opportunity finding the exponential representations of the nth element of
(s, t)-Pell matrix sequence using the nth power of first element of (s, t)-Pell matrix
sequence. Similarly, the exponential representation of the nth element of k-Pell
matrix sequence is

ePk,n = −(−k)n
∞∑
i=0

pk,ni−n

pk,ni!
I2 +

∞∑
i=0

pk,ni
pk,ni!

Pn
k,1,

and the exponential representation of the nth element of the Pell matrix sequence
is

ePn =

∞∑
k=0

pnk
pnk!

Pn
1 − (−1)n

∞∑
k=0

pnk−n

pnk!
I2.

Proof. The eigenvalues of P1(s, t) =

(
2s t
1 0

)
are r1(s, t) = s +

√
s2 + t

and r2(s, t) = s −
√
s2 + t. By Lemma 2.1, we know that Pn (s, t) = Pn

1 (s, t).

Therefore, the eigenvalues of Pn(s, t) are rn1 (s, t) =
(
s+

√
s2 + t

)n
and rn2 (s, t) =(

s−
√
s2 + t

)n
. By the equality ePn(s,t) = a1Pn(s, t) + a0I2, we get

er
n
1 (s,t) = a1r

n
1 (s, t) + a0, er

n
2 (s,t) = a1r

n
2 (s, t) + a0.

By these equations, the values of a0, a1 are found. If we substitute the values of a0,
a1, it is obtained that

ePn(s,t) =

(
rn1 (s, t)e

rn2 (s,t) − rn2 (s, t)e
rn1 (s,t)

rn1 (s, t)− rn2 (s, t)

)
I2 +

(
er

n
1 (s,t) − er

n
2 (s,t)

rn1 (s, t)− rn2 (s, t)

)
Pn(s, t).

Applying the Maclaurin series expansion of expx and (1.4), (1.5), we obtain the
following:

er
n
1 (s,t) − er

n
2 (s, t)

rn1 (s, t)− rn2 (s, t)
=

∞∑
k=0

(
rnk1 (s, t)− rnk2 (s, t)

rn1 (s, t)− rn2 (s, t)

)
1

k!
=

∞∑
k=0

pnk(s, t)

pn(s, t)k!
,

rn1 (s, t)e
rn2 (s,t) = rn1 (s, t)

∞∑
k=0

rnk2 (s, t)
1

k!
= (−t)n

∞∑
k=0

rnk−n
2 (s, t)

1

k!
,

and

rn2 (s, t)e
rn1 (s,t) = rn2 (s, t)

∞∑
k=0

rnk1 (s, t)
1

k!
= (−t)n

∞∑
k=0

rnk−n
1 (s, t)

1

k!
.
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If the results are combined

ePn(s,t) =

(
rn1 (s, t)e

rn2 (s,t) − rn2 (s, t)e
rn1 (s,t)

rn1 (s, t)− rn2 (s, t)

)
I2 +

(
er

n
1 (s,t) − er

n
2 (s,t)

rn1 (s, t)− rn2 (s, t)

)
Pn(s, t)

=

[
(−t)n

∞∑
k=0

rnk−n
2 (s, t)

1

k!
− (−t)n

∞∑
k=0

rnk−n
1 (s, t)

1

k!

]
I2/ (r

n
1 (s, t)− rn2 (s, t))

+

∞∑
k=0

pnk(s, t)

pn(s, t)k!
Pn(s, t)

= −(−t)n
∞∑
k=0

pnk−n(s, t)

pn(s, t)k!
I2 +

∞∑
k=0

pnk(s, t)

pn(s, t)k!
Pn
1 (s, t).

If we choose s = t = 1, we can apply this result for classic Pell matrix sequence

defined in (2.1). The eigenvalues of P1 =

(
2 1
1 0

)
matrix are r1 = 1 +

√
2 and

r2 = 1−
√
2. By r1r2 = −1

ePn =

(
rn1 e

rn2 − rn2 e
rn1

rn1 − rn2

)
I2 +

(
er

n
1 − er

n
2

rn1 − rn2

)
Pn

=

∞∑
k=0

pnk
pnk!

Pn
1 − (−1)n

∞∑
k=0

pnk−n

pnk!
I2

where Pn is the nth element of the classic Pell matrix sequence.

If we choose s = 1, t = k, we can apply this result for k-Pell matrix sequence

defined in (2.2). The eigenvalues of Pk,1 =

(
2 1
k 0

)
matrix are 1+

√
1 + k and 1−

√
1 + k. By Lemma 2.1, the eigenvalues of Pk,n matrix as rnk,1 =

(
1 +

√
1 + k

)n
and

rnk,2 =
(
1−

√
1 + k

)n
. By the Binet formula for Pk,n and rk,1rk,2 = −k

ePk,n =

(
rnk,1e

rnk,2 − rnk,2e
rnk,1

rnk,1 − rnk,2

)
I2 +

(
er

n
k,1 − er

n
k,2

rnk,1 − rnk,2

)
Pk,n

=

[
(−k)n

∞∑
i=0

rni−n
k,2

1

i!
− (−k)n

∞∑
i=0

rni−n
k,1

1

i!

]
I2/
(
rnk,1 − rnk,2

)
+

∞∑
i=0

pk,ni
pk,ni!

Pk,n

= −(−k)n
∞∑
i=0

pk,ni−n

pk,ni!
I2 +

∞∑
i=0

pk,ni
pk,ni!

Pn
k,1

where Pk,n is the nth element of the k-Pell matrix sequence.

The following theorem shows us a second way for expressing the exponential
representation of the nth element of (s, t)-Pell matrix sequence. 2
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Theorem 3.2. For any integer n ≥ 0, the exponential representation of the nth

element of (s, t)-Pell matrix sequence is in the following form:

ePn(s,t) = U

[
er

n
1 (s,t) 0
0 er

n
2 (s,t)

]
U−1

where U is an invertible matrix and[
er

n
1 (s,t) 0
0 er

n
2 (s,t)

]
=

∞∑
i=0

t
pni−1(s, t)

i!
I2 −

∞∑
i=0

pni(s, t)

i!

[
r1(s, t) 0

0 r2(s, t)

]
.

This result has more advantage for finding the exponential representations of the
nth element of (s, t)-Pell matrix sequence. Because we only need the elements of
the sequence (pn(s, t)).

Proof. Because of the eigenvalues of Pn(s, t) are (r1(s, t))
n
and (r2(s, t))

n
, there is

an invertible U matrix such that

Pn(s, t) = U

[
(r1(s, t))

n
0

0 (r2(s, t))
n

]
U−1.

Therefore, the exponential form is

ePn(s,t) = U

[
e(r1(s,t))

n

0
0 e(r2(s,t))

n

]
U−1.

Then, we obtain[
e(r1(s,t))

n

0
0 e(r2(s,t))

n

]
=

(
r1(s, t)e

(r2(s,t))
n − r2(s, t)e

(r1(s,t))
n

r1(s, t)− r2(s, t)

)
I2

+

(
e(r2(s,t))

n − e(r1(s,t))
n

r1(s, t)− r2(s, t)

)[
r1(s, t) 0

0 r2(s, t)

]
=

[ ∞∑
i=0

(−t)

(
rni−1
2 (s, t)− rni−1

1 (s, t)

r1(s, t)− r2(s, t)

)
1

i!
I2

]

+

∞∑
i=0

(
rni2 (s, t)− rni1 (s, t)

r1(s, t)− r2(s, t)

)
1

i!

[
r1(s, t) 0

0 r2(s, t)

]

=

∞∑
i=0

t
pni−1(s, t)

i!
I2 −

∞∑
i=0

pni(s, t)

i!

[
r1(s, t) 0

0 r2(s, t)

]
.

If we choose s = t = 1, we can apply this result for classic Pell matrix sequence as

ePn = U

[
er

n
1 0
0 er

n
2

]
U−1
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where[
er

n
1 0
0 er

n
2

]
=

(
r1e

rn2 − r2e
rn1

r1 − r2

)
I2 +

(
er

n
1 − er

n
2

r1 − r2

)[
r1 0
0 r2

]
=

∞∑
i=0

(
rni−1
1 − rni−1

2

r1 − r2

)
1

i!
I2 +

∞∑
i=0

(
rni1 − rni2
r1 − r2

)
1

i!

[
r1 0
0 r2

]

=

∞∑
i=0

pni−1

i!
I2 +

∞∑
i=0

pni
i!

[
r1 0
0 r2

]
.

If we choose s = 1, t = k, we can apply this result for k-Pell matrix sequence.
The eigenvalues of matrix are 1 +

√
1 + k and 1 −

√
1 + k. By Lemma 2.1, the

eigenvalues of Pk,n matrix as rnk,1 =
(
1 +

√
1 + k

)n
and rnk,2 =

(
1−

√
1 + k

)n
.By

the Binet formula for Pk,n and rk,1rk,2 = −k, we get

ePk,n = U

[
er

n
k,1 0

0 er
n
k,2

]
U−1

where[
er

n
k,1 0

0 er
n
k,2

]
=

(
rk,1e

rnk,2 − rk,2e
rnk,1

rk,1 − rk,2

)
I2 +

(
er

n
k,1 − er

n
k,2

rk,1 − rk,2

)[
rk,1 0
0 rk,2

]

=

∞∑
i=0

k

(
rni−1
k,1 − rni−1

k,2

rk,1 − rk,2

)
1

i!
I2

∞

+
∑

i=0

(
rnik,1 − rnik,2
rk,1 − rk,2

)
1

i!

[
rk,1 0
0 rk,2

]

= k

( ∞∑
i=0

pk,ni−1

i!

)
I2 +

∞∑
i=0

pk,ni
i!

[
1 +

√
1 + k 0

0 1−
√
1 + k

]
.

2

Theorem 3.3. For n ≥ 0, the exponential representation of the (2n)th element of
Pell matrix sequence is given in the following form:

eP2n =

(
p1 +

∞∑
k=1

p2nk−1

k!

)
I2 +

∞∑
k=0

p2nk
k!

[
r1 0
0 r2

]
.

Proof. By using Lemma 2.2, there is an invertible U matrix such that

P2n = PnPn = U

[
r2n1 0
0 r2n2

]
U−1.

By using the properties of the exponential matrix, we have

eP2n = U

[
er

2n
1 0

0 er
2n
2

]
U−1.
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We also obtain[
er

2n
1 0

0 er
2n
2

]
=

(
r1e

r2n2 − r2e
r2n1

r1 − r2

)
I2 +

(
er

2n
2 − er

2n
1

r1 − r2

)[
r1 0
0 r2

]
,

er
2n
1 − er

2n
2

r1 − r2
=

∞∑
k=0

(
r2nk1 − r2nk2

r1 − r2

)
1

k!
=

∞∑
k=0

p2nk
k!

,

and

r1e
r2n2 − r2e

r2n1

r1 − r2
=

∞∑
i=0

(
r2ni−1
1 − r2ni−1

2

r1 − r2

)
1

i!
=

∞∑
i=0

p2ni−1

i!
.

By combining the results, the proof is completed. 2

Exponential representation of (2n)th k-Pell and (s, t)-Pell matrix sequences can
be obtained by using the same procedure. We give the results as

ePk,2n = k

( ∞∑
i=1

pk,2ni−1

i!

)
I2 +

∞∑
i=0

pk,2ni
i!

[
rk,1 0
0 rk,2

]
,

eP2n(s,t) = t

( ∞∑
k=1

p2nk−1(s, t)

k!

)
I2 +

∞∑
k=0

p2nk(s, t)

k!

[
r1(s, t) 0

0 r2(s, t)

]
.

Theorem 3.4. For n ≥ 0, the exponential representation of the (2n)th element of
(s, t)-Pell matrix sequence is computed in the following form:

eP2n(s,t) = −t2n
∞∑
k=0

p2nk−2n(s, t)

p2n(s, t)k!
I2 +

∞∑
k=0

p2nk(s, t)

p2n(s, t)k!
P 2n
1 (s, t)

Proof. The eigenvalues of P1(s, t) are r1(s, t) = s +
√
s2 + t and r2(s, t) = s −√

s2 + t. The eigenvalues of P2n(s, t) are r
2n
1 (s, t) =

(
s+

√
s2 + t

)2n
and r2n2 (s, t) =(

s−
√
s2 + t

)2n
. By the equality eP2n(s,t) = a1P2n(s, t) + a0I2, we get

er
2n
1 (s,t) = a1r

2n
1 (s, t) + a0, e

r2n2 (s,t) = a1r
2n
2 (s, t) + a0.

By these equations, the values of a0, a1 are found. If we substitute the values of a0,
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a1, it is obtained that

eP2n(s,t) =

(
r2n1 (s, t)er

2n
2 (s,t) − r2n2 (s, t)er

2n
1 (s,t)

r2n1 (s, t)− r2n2 (s, t)

)
I2

+

(
er

2n
1 (s,t) − er

2n
2 (s,t)

r2n1 (s, t)− r2n2 (s, t)

)
P2n(s, t)

=

[ ∞∑
k=0

1

k!

(
r2nk−2n
2 (s, t)− rnk−n

1 (s, t)
)] I2

r2n1 (s, t)− r2n2 (s, t)

+

∞∑
k=0

p2nk(s, t)

p2n(s, t)k!
P2n(s, t)

= −t2n
∞∑
k=0

p2nk−2n(s, t)

p2n(s, t)k!
I2 +

∞∑
k=0

p2nk(s, t)

p2n(s, t)k!
P 2n
1 (s, t)

If we choose s = t = 1, we can apply this result for the classic Pell matrix sequence

ePn =

∞∑
k=0

p2nk
p2nk!

P 2n
1 −

∞∑
k=0

p2nk−2n

p2nk!
I2.

If we choose s = 1, t = k, we can apply this result for k-Pell matrix sequence

ePk,n = −k2n
∞∑
i=0

pk,2ni−2n

pk,2ni!
I2 +

∞∑
i=0

pk,2ni
pk,2ni!

P 2n
k,1.

2

4. Conclusion

The exponential representations of the Pell matrix sequence and its generalized
matrix sequences are investigated in this study. The elements of the sequences are
2 × 2 matrices. This study can be extended to 3 × 3 matrices. The other special
integer sequences can also be used for finding exponential representations of them.
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