• Title/Summary/Keyword: Peclet Number

Search Result 69, Processing Time 0.022 seconds

Bio-degradation of Phenol in Wastewater by Enzyme-loaded Membrane Reactor: Numerical Approach

  • Barbieri, Giuseppe;Choi, Seung-Hak;Scura, Francesco;Mazzei, Rosalinda;Giorno, Lidietta;Drioli, Enrico;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.72-82
    • /
    • 2009
  • A mathematical model was written for simulating the removal of phenol from wastewater in enzyme-loaded membrane reactor (EMR). The numerical simulation program was developed so as to predict the degradation of phenol through an EMR. Numerical model proves to be effective in searching for optimal operating conditions and creating an optimal microenvironment for the biocatalyst in order to optimize productivity. In this study, several dimensionless parameters such as Thiele Modulus (${\phi}^2$, dimensionless Michaelis-Menten constant ($\xi$), Peclet number (Pe) were introduced to simplify their effects on system efficiency. In particular, the study of phenol conversion at different feed compositions shows that low phenol concentrations and high Thiele Modulus values lead to higher reactant degradation.

The Study of Finite Element Method for Analyses of Travelling Magnetic Field Problem (운동자계 문제의 해석을 위한 유한요소법에 관한 연구)

  • Chang Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.108-116
    • /
    • 2005
  • This paper presents finite element analyses solution in the travelling magnetic field problem. The travelling magnetic field problem is subject to convective-diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Dirichlet, Neumann and Periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FFM is stable regardless boundary condition.

Experimental studies on mass transport in groundwater through fracture network using artificial fracture model

  • Tsuchihara Takeo;Yoshimura Masahito;Ishida Satoshi;Imaizumi Masayuki;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.676-683
    • /
    • 2003
  • A laboratory experiment using artificial fracture rocks was used to understand the 3-dimensional dispersion of a tracer and the mixing process in a fractured network. In this experiment, 12cm polystyrene foam cubes with two electrodes for monitoring electric conductivity (EC) were used as artificial fractured rocks. Distilled water with 0.5mS/m was used as a tracer in water with 35mS/m and the difference of EC between the tracer and the water was monitored by a multipoint simultaneous measurement system of electrical resistance. The results showed that even if the fracture arrangement pattern was not straight in the direction of the flow, the tracer did not diffuse along individual fractures and an oval tracer plume, which was the distribution of tracer concentrations, tended to be form in the direction of the flow. The vertical cross section of the tracer distribution showed small diffusivity in the vertical direction. The calculated total tracer volume passing through each measurement point in the horizontal cross section showed while that the solute passed through measurement points near the direction of hydraulic gradient and in other directions, the passed tracer volumes were small. Using Peclet number as a criterion, it was found that the mass distribution at the fracture intersection was controlled in the stage of transition between the complete mixing model and the streamline routing model.

  • PDF

Analytical Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 해석적인 해)

  • Yoo, H.;Pak, E.-T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-51
    • /
    • 1995
  • In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

  • PDF

Study on the separation of large ionic-molecules by electrofiltration (전기여과에 의한 거대이온성 분자체 분리현상연구)

  • Park Young-Gyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.18-23
    • /
    • 1998
  • Theoretical model has been derived in the electrophoretic separation system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The separation of two different large ionic-molecules is predicted with a value of $(Pe_t/Pe_g)$ of individual large ionic-molecule using an operator and the reptation theories.

Prediction of Leachate Migration from Waste Disposal Site to Underground LPG Storage Facility and Review of Contamination Control Method by Numerical Simulations (수치모의를 통한 지하 LPG 저장시설에 인접한 폐기물매립지에서의 침출수이동 예측 및 제어공법 검토)

  • 한일영;서일원;오경택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • In case waste disposal site is to be constructed close to the underground facilities such as LPG storage cavern which is completely maintained by groundwater pressure, it is generally requested that the possibility on leachate contamination of cavern area be reviewed and the countermeasure, if it is estimated cavern area is severely affected by leachate, be taken into consideration. Prediction was performed and leachate control plan was made using by analytical and the numerical analysis on the leachate migration which is likely to happen at the area between the proposed waste disposal site and the underground LPG storage cavern located at the U petrochemical complex. Analytical solutions were obtained by the conservative mass advection-diffusion equation and the effect of advection and dispersion factor on the leachate migration was reviewed through peclet number calculation and the functional relationship between the factors and leachate transport velocity was established, which leads to enable us to predict the leachate transport velocity without difficulties when different parameters (factors) are used for analytical solution. Numerical solutions were obtained by FEM using AQUA2D which is for the simulation of groundwater flow and contaminant transport. 3-D discrete fracture models were simulated and fracture flow analysis was performed and feasibility study on the water-curtain system was conducted through the fracture connectivity analysis in rock mass. As results of those analyses, it was interpreted that the leachate would trespass on the LPG storage cavern area in 30 years from the proposed wate disposal site and the vertical water-curtain system was effective mathod for the prevention of leachate's migration further into the cavern area.

  • PDF

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor

  • Wang, X.A.;Zhang, Dalin;Wang, Mingjun;Song, Ping;Wang, Shibao;Liang, Yu;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.708-720
    • /
    • 2020
  • Core-wide temperature distribution in sodium-cooled fast reactor plays a key role in its decay heat removal process, however the prediction for temperature distribution is quite complex due to the conjugate heat transfer between the assembly flow and the inter-wrapper flow. Hybrid medium model has been proposed for conjugate heat transfer modeling in the core. The core is modeled with a Realistic modeled inter-wrapper flow and hybrid medium modeled assembly flow. To validate present model, simulations for a three-assembly model were performed with Realistic modeling, traditional porous medium model and hybrid medium model, respectively. The influences of Uniform/Non-Uniform power distribution among assemblies and the Peclet number within the assembly flow have been considered. Compared to traditional porous medium model, present model shows a better agreement with in Realistic modeling prediction of the temperature distribution and the radial heat transfer between the inter-wrapper flow and the assembly flow.

Prediction of Water-Quality Enhancement Effects of Gates Operation in the West-Nakdong River Using RMA2/RMA4 Models (RMA2/RMA4 모형을 이용한 서낙동간 수문연계운영의 수질개선 효과 예측)

  • Lee, Keum-Chan;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.971-981
    • /
    • 2009
  • An objective of this study is as follows: 1) performing sensitivity analysis and parameter estimation of RMA2 and RMA4 models for the West-Nakdong River, 2) drawing up alternatives of gates-operation for water-quality enhancement, and 3) quantitative evaluation of methodology of 'flow-restoration by gates-operation' among 'Comprehensive Plan Improving Water-Quality in the West-Nakdong River(WNR)' with the target water-quality(BOD at Nakbon-N point: below 4.3 mg/L). The parameters for the RMA2 (depth-averaged two-dimensional flow model) and RMA4 (depth-averaged two-dimensional water-quality model) were determined by sensitivity analysis. Result of parameter estimation for RMA2 and RMA4 models is $1,000\;Pa{\cdot}s$ of the eddy viscosity, 20 of the Peclet number, 0.025 of the Manning coefficient, and $1.0\;m^2/s$ of the diffusion coefficient. We have evaluated the effects of water-quality enhancement of the selected alternatives by numerical simulation technique with the models under the steady-state flow condition and the time-variant transport condition. Because of no-resuspension from river bottom and considering BOD as conservative matter, these simulation results slightly differ from real phenomena. In the case of $50\;m^3/s$ of Daejeo-gate inflow, two-dimensional flow pn results result represents that small velocity occurs in the Pyungkang Stream and no flow in the Maekdo River. In the WNR, there occurs the most rapid flow near timhae-bridge. In the WNR, changes of water-quality for the four selected simulation cases(6, 10, 30, $50\;m^3/s$ of the Daejeo-gate inflow) were predicted. Since the Daejeo-Gate and the Noksan-Gate can be opened up to 7 days, it would be found that sustainable inflow of $30\;m^3/s$ at the Daejeo-gate makes BOD in the WNR to be under the target of water-quality.