• Title/Summary/Keyword: Pear orchards

Search Result 86, Processing Time 0.024 seconds

Outbreak and Spread of Bacterial Canker of Kiwifruit Caused by Pseudomonas syringae pv. actinidiae Biovar 3 in Korea

  • Kim, Gyoung Hee;Kim, Kwang-Hyung;Son, Kyeong In;Choi, Eu Ddeum;Lee, Young Sun;Jung, Jae Sung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.545-551
    • /
    • 2016
  • A bacterial pathogen, Pseudomonas syringae pv. actinidiae (Psa), is a causal agent of kiwifruit bacterial canker worldwide. Psa biovar 3 (Psa3) was first detected in 2011 at an orchard in Dodeok-myeon, Goheung-gun, Jeonnam Province in Korea. In this study, we present the results of an epidemiological study regarding Psa3 occurrence on kiwifruit orchards in Korea for the period of 2013 to 2015. Since the first detection of Psa3 in 2011, there was no further case reported by 2013. However, Psa3 was rapidly spreading to 33 orchards in 2014; except for three orchards in Sacheon-si, Gyeongnam Province, most cases were reported in Jeju Island. Entering 2015, bacterial canker by Psa3 became a pandemic in Korea, spreading to 72 orchards in Jeju Island, Jeonnam, and Gyeongnam Provinces. Our epidemiological study indicated that the first Psa3 incidence in 2011 might result from an introduction of Psa3 through imported seedlings from China in 2006. Apart from this, it was estimated that most Psa3 outbreaks from 2014 to 2015 were caused by pollens imported from New Zealand and China for artificial pollination. Most kiwifruit cultivars growing in Korea were infected with Psa3; yellow-fleshed cultivars (Yellow-king, Hort16A, Enza-gold, Zecy-gold, and Haegeum), red-fleshed cultivars (Hongyang and Enza-Red), green-fleshed cultivars (Hayward and Daeheung), and even a kiwiberry (Skinny-green). However, susceptibility to canker differed among cultivars; yellow- and red-fleshed cultivars showed much more severe symptoms compared to the green-fleshed cultivars of kiwifruit and a kiwiberry.

Population density and internal distribution range of Erwinia amylovora in apple tree branches

  • Mi-Hyun Lee;Yong Hwan Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.881-892
    • /
    • 2022
  • Fire blight in apple and pear orchards, caused by Erwinia amylovora, is a global problem. Ongoing outbreaks have occurred since 2015. In 2020, 744 orchards were infected compared with 43 orchards in 2015 in Korea. When are insufficient. In Korea, all host plants in infected orchards are buried deeply with lime to eradicate the E. amylovora outbreak within a few days. Apple trees with infected trunks and branches and twigs with infected leaves and infected blooms were collected from an apple orchard in Chungju, Chungbuk province, where fire blight occurred in 2020. We used these samples to investigate the population density and internal distribution of E. amylovora on infected branches and twigs during early season infections. Infected branches and twigs were cut at 10 cm intervals from the infected site, and E. amylovora was isolated from tissue lysates to measure population density (colony-forming unit [CFU]·mL-1). The polymerase chain reaction was performed on genomic DNA using E. amylovora specific primers. Real-time polymerase chain reaction (PCR) was performed to detect E. amylovora in asymptomatic tissue. The objective of these assays was to collect data relevant to the removal of branches from infected trees during early season infection. In infected branches, high densities of greater than 106 CFU·mL-1 E. amylovora were detected within 20 cm of the infected sites. Low densities ranging from 102 to 106 CFU·mL-1 E. amylovora were found in asymptomatic tissues at distances of 40 - 75 cm from an infection site.

Weed Control Efficacy and Growth of Pear Tree according to Several Weed Control Method in Pear Orchard (배 과원에서 잡초방제 방법에 따른 제초효과와 배나무생육)

  • Jang, Il;Kim, Hyang Mi;Park, Yong Seog;Lee, Jeong Deug;Kim, Sung Min;Choi, Jin Ho;Lee, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This study was conducted to clarify effects of weed control methods on damages from agricultural chemicals of pear trees, growth of weeds and states of pear trees after treating pear orchards with different methods of weed controlling, density of GLU and application times. The growth and occupation rate were investigated after 10, 20 and 40 days of weeding treatment. According to a result of the first treatment conducted when weeds in the lower parts of crown in a pear orchard began to grow and grew about 20 cm, unwoven cloth covering showed the highest control value with 100% in all 14 kinds of grasses. In comparison, Stellaria aquatica and catchweed bedstraw showed 96.7% and 97.3% respectively in the 20 DAT investigate after the first treatment of GLU 540 g a.i. ha-1 and the high control value of 100% in other all kinds of grasses. According to an investigation of stalk enlargement, length of new shoot and the number of new shoot made to know differences in tree growth following treatment of the lower part of crown, to use weed killers two or three times a year or to eliminate grasses with machines have positive effects on cross growth of pear trees.

Early Autumn Maturing Pear Cultivar 'Sinhwa' with Fascinating Very Soft Flesh (부드러운 육질이 매력적인 중생종 배 '신화')

  • Kang, Sam-Seok;Kim, Yoon-Kyeong;Hwang, Hea Seong;Cho, Kwang-Sik;Shin, Il-Sheob;Won, Kyeong-Ho;Choi, Jang-Jeon;Kim, Ki-Hong;Jo, Ji Hyeong
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.512-516
    • /
    • 2013
  • Pear cultivar 'Sinhwa' (Pyrus pyrifolia var. culta Nakai) was originated from a cross between 'Niitaka' and Whasan' with the aims of improving the fruit quality and the traits of cultivation and of early maturing more than 'Whasan' cultivar at Pear Research Station of National Institute of Horticultural & Herbal Science, Rural Development Administration in 1995. 'Sinhwa' was preliminarily selected in 2004 and named in 2009. The tree shows vigorous growth habit and semi-spread characters like 'Niitaka'. Furthermore, it has a sufficient and well upkeep of the flower bud, so it can be more easily cultivated in orchards. In the flower characteristics, flowering time of 'Sinhwa' is $11^{th}$ April like as maternal parent 'Niitaka'. Also 'Sinhwa' has short of pollen grains, so it is need above two pollinizer cultivars. 'Sinhwa' is highly resistant to black leaf spot (Alternaria kikuchiana) and relatively strong to pear scab (Venturia nashicola) in field condition. The optimum harvest time is around Sep. $15^{th}$ in Naju, which is ahead of 'Whasan' about 10 days in the harvest period. The fruit shape is oblate and fruit skin color is yellowish-brown during harvesting time. The average weight of fruit is 627 g, and the soluble solids content is $13.0^{\circ}Brix$. The flesh is very soft and juicy, and renders good eating quality. Shelf life is about 30 days under the room temperature condition.

Fruit Dieting Behavior of Black-billed Magpies, Azure-winged Magpies, and Brown-eared Bulbuls in the Cage (사육상에서 까치, 물까치, 직박구리의 과실먹이 섭식행동)

  • Song, Jang-Hoon;Shin, Gil-Ho;Cho, Young-Sik;Park, Jang-Hyun;Lee, Han-Chan
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.85-89
    • /
    • 2012
  • To investigate the bird's dieting behavior for several fruits in orchards, this study was carried out in 2008. Black-billed magpies (Pica pica), azure-winged magpies (Cyanopica cyanus), and brown-eared bulbuls (Hypsipetes amaurotis) made their unique marks on the surface of pear and apple fruits; black-billed magpies pecked fruits strongly and left round holes with perpendicular angle, whereas those of azure-winged magpies and brown-eared bulbuls were sack-shaped with narrow neck and marked unique stripes on the skin. For the fruits of pear and apple from bagging practices, the birds showed different foraging behavior; black-billed magpies could injure all kinds of fruits whether with paper bags or not, but azure-winged magpies and brown-eared bulbuls could not attack the fruits with paper bag. Azure-winged magpies and brown-eared bulbuls preferred pear fruits to those of apples and satsuma mandarins in the cage trials. To reduce the injuries by azure-winged magpies and brown-eared bulbuls on pear and apple fruit, wrapping bag should not be impaired. Introducing azure-winged magpies to Cheju should be prohibited for the potential citrus injury by them.

Effect of Lime Sulfur on Changes of Fungal Diversity in Pear Fallen Leaves (석회유황합제가 배나무 낙엽의 진균 다양성 변화에 미치는 영향)

  • Min, Kwang-Hyun;Song, Jang Hoon;Cho, Baik Ho;Yang, Kwang-Yeol
    • The Korean Journal of Mycology
    • /
    • v.43 no.4
    • /
    • pp.281-285
    • /
    • 2015
  • This study was conducted to examine changes in the fungal community on fallen leaves of pear by treatment with lime sulfur. Although the lime sulfur could reduce the primary inoculum of several pathogens on spring season, the effect of lime sulfur has not been well determined scientifically. Fallen leaves infected by pear diseases in pear orchards in Naju were collected and treated with lime sulfur or water as a control. To determine the fungal diversity from each treatment, rDNA internal transcribed spacer (ITS) regions were analyzed after extraction of fungal genomic DNA from lime sulfur-treated or water-treated fallen leaves, respectively. The most common fungal species were Ascomycota and Basidiomycota in both treated leaves. However, the population dynamics of several fungal species including Alternari sp., Cladosporium sp., and Phomopsis sp., which are known as pear pathogens for skin sooty dapple disease, were quite different from each treated leaves. These results indicated that lime sulfur treatment led to changes of fungal communities on pear fallen leaves and could be applicable as a dormant spray.

Seasonal occurrence of major moth pests and their environmental friendly control in pear orchard (배과원에서 발생하는 주요 나방류 해충의 발생양상 및 환경친화적 방제)

  • Seo, Mi-Ja;Park, Min-Woo;Yoon, Kyu-Sik;Jo, Shin-Hyuk;Jo, Chang-Wook;Shin, Hyo-Seob;Kwon, Hye-Ri;Kang, Min-A;Kim, Sae-Hee;Yu, Yong-Man;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • The changes in major moth populations were monitored by sex pheromone traps in pear orchards at Yuseong-Gu, Daejeon from 2008 to 2010. Among four major moths, Grapholita molesta and Caposina sasakii occurred most frequently. Their occurrences peaked 2 to 3 times during the growing season from May to September. G. molesta was exceptional, occurring until September. For the environmentally-friendly control of these moths, 9 control materials including insect pathogenic bacteria and environmentally-friendly agricultural materials, were examined on the larva of 4 kinds of moth and sprayed on pear leaves in the field. As the generalized results of bioassay, Bacillus thuringiensis subsp. kurstaki and Sophora flavescens extract were shown to have better control effects than any other control material.

Investigating Survival of Erwinia amylovora from Fire Blight-Diseased Apple and Pear Trees Buried in Soil as Control Measure (토양에 매몰 방제된 화상병 감염 사과와 배 나무로부터 화상병균 생존 조사)

  • Kim, Ye Eun;Kim, Jun Young;Noh, Hyeong Jin;Lee, Dong Hyeung;Kim, Su San;Kim, Seong Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.269-272
    • /
    • 2019
  • BACKGROUND: Since 2015, fire blight disease caused by Erwinia amylovora has been devastating apple and pear orchards every year. To quickly block the disease spreading, infected apple and pear trees have been buried in soil. However, concern on the possibility of the pathogen survival urgently requires informative data on the buried host plants. Therefore, this study was conducted to investigate the survival of the pathogen from the buried host plants. METHODS AND RESULTS: Apple trees buried in 42 months ago in a Jecheon site and pear trees buried in 30 months ago in an Anseong site were excavated using an excavator. Plant samples were taken from stems and twigs of the excavated trees. The collected 120 samples were checked for rotting and used for bacterial isolation, using TSA, R2A, and E. amylovora selection media. The purely isolated bacteria were identified based on colony morphology and 16S rDNA sequences. Wood rotting and decay with off smells and discoloring were observed from the samples. A total of 17 genera and 48 species of bacteria were identified but E. amylovora was not detected. CONCLUSION: Our investigation suggests that the survival of E. amylovora doesn't seem possible in the infected hosts which have been buried in soil for at least 30 months. Therefore, the burial control can be considered as a safe method for fire blight disease.

Forecasting of Daily Minimum Temperature during Pear Blooming Season in Naju Area using a Topoclimate-based Spatial Interpolation Model (공간기후모형을 이용한 나주지역 배 개화기 일 최저기온 예보)

  • Han, J.H.;Lee, B.L.;Cho, K.S.;Choi, J.J.;Choi, J.H.;Jang, H.I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.209-215
    • /
    • 2007
  • To improve the accuracy of frost warning system for pear orchard in a complex terrain in Naju area, the daily minimum temperature forecasted by Korea Meteorological Administration (KMA) was interpolated using a regional climate model based on topoclimatic estimation and optimum scale interpolation from 2004 to 2005. Based on the validation experiments done for three pear orchards in the spring of 2004, the results showed a good agreement between the observed and predicted values, resulting in improved predictability compared to the forecast from Korea Meteorological Administration. The differences between the observed and the predicted temperatures were $-2.1{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the valley, $-1.6{\sim}2.7^{\circ}C$ (on average $-0.4^{\circ}C$) in the riverside and $-1.1{\sim}3.5^{\circ}C$ (on average $0.6^{\circ}C$) in the hills. Notably, the errors have been reduced significantly for the valley and riverside areas that are more affected by the cold air drainage and more susceptible to frost damage than hills.

Outbreak of Fire Blight of Apple and Pear and Its Characteristics in Korea in 2019 (2019년 국내 사과와 배 화상병 대발생과 그 특징)

  • Ham, Hyeonheui;Lee, Kyong Jae;Hong, Seong Jun;Kong, Hyun Gi;Lee, Mi-Hyun;Kim, Hyun-Ran;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.239-249
    • /
    • 2020
  • To find out the cause of the fire blight outbreak in apples and pears of Korea in 2019, we investigated disease appearing situation of thirty fire blight infected orchards, and interviewed farmers to determine the cultivation characteristics. Fire blight occurred mostly in orchards that had infected more than 2 years before. The cause of this were as follows: farmers did not know the symptoms of the disease properly. It is presumed that it has spread from the first occurrence to the surrounding orchards by flower-visiting insects or farmers and to a short distance or a long distance by the same cultivator or co-farmer. These series of processes repeated in the newly spreading area, and then disease reports increased as farmers became aware of fire blight. To minimize the spread of fire blight in Korea, it suggested that thorough education of farmers for early diagnosis and quantitative detection technology that can diagnose even in no symptom showing plants. And chemical or biological spraying systems suitable for domestic cultivation methods, which are producing large fruits, and molecular epidemiological studies of pathogens.