• Title/Summary/Keyword: Peak dose

Search Result 439, Processing Time 0.032 seconds

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

Pulse Radiation Dose Measurement using the Peak Detector (Peak Detector를 이용한 펄스방사선 선량 측정)

  • Jeong, Sang-hun;Lee, Nam-ho;Oh, Seong-chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1020-1022
    • /
    • 2013
  • In this paper, proposed peak detector for the measurement of pulse radiation dose. The speed of the pulse radiation signal is the between a few ns and tens ns. Therefore, it is difficult to measure peak voltage. Peak Detector maintains the peak voltage generated from the sensor for a few ms and the converted signals can be easily measured using the ADC. The peak detector simulation results peak value remained of more than 1ms. Pulse radiation irradiation test results, a dose of $1.95{\times}10^6rad/s$ was measured.

  • PDF

Technical Standards on the Safety Assessment of a HLW Repository in Other Countries (고준위폐기물 처분장 안전성평가 관련 타 국가의 기술기준)

  • Lee, Sung-Ho;Hwang, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.183-190
    • /
    • 2009
  • The basic function of HLW disposal system is to prevent excessive radio-nuclides being leaked from the repository in a short time. To do this, many technical standards should be developed and established on the components of disposal system. Safety assessment of a repository is considered as one of technical standards, because it produces quantitative results of the future evolution of a repository based on a reasonably simplified model. In this paper, we investigated other countries' regulations related to safely assessment focused on the assessment period, radiation dose limits and uncertainties of the assessment. Especially, in the investigation process of the USA regulations, the USA regulatory bodies' approach to assessment period and peak dose is worth taking into account in case of a conflict between peak dose from safety assessment and limited value in regulation.

  • PDF

Changes of photoluminescence in silicon-oxide films (실리콘산화막의 광루미니센스 변화에 관한 연구)

  • 이재희
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.216-220
    • /
    • 2000
  • Photoluminescence (PL) results of $Si^+$-implanted $SiO_2$films on crystalline silicon are reported. Visible and infrared PL are observed for all the samples. The PL spectrums have about 7000 $\AA$, 7400 $\AA$ and 8400 $\AA$ peak positions. As amount of $Si^+$ ion dose changed, the PL peak positions and intensity are changed. In particular, the PL spectrum has three peaks and more intensity than the other $Si^+$ ion implantation samples for $1{\times}10^{17}/cm^2$ $Si^+$ ion implantation. Not nanocrystal but defects that $Si^+$ ions treated are contributed to the PL spectrum. For the changes of $Si^+$ ion dose and annealing time, O rich radiative defects, Si rich radiative defects, and nonradiative defects control the PL spectrum. We confirmed that more radiative defects can be created by control of $Si^+$ ion dose.

  • PDF

Analysis of Radiation Dose Enhancement for Spread Out Bragg-peak of Proton (확산된 피크의 양성자에서 선량 증강 현상에 대한 분석)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.253-260
    • /
    • 2019
  • Radiation dose enhancement is a method of increasing the cross section of interaction, thus increasing the deposited dose. This can contribute to linear energy transfer, LET and relative biological effectiveness, RBE. Previous studies on dose enhancement have been mainly focused on X, ${\gamma}-rays$, but in this study, the dose enhancement was analyzed for proton using Monte Carlo simulation using MCNP6. Based on the mathematical modeling method, energy spectrum and relative intensity of spread out Bragg-peak were calculated, and evaluated dose enhancement factor and dose distribution of dose enhancement material, such as aurum and gadolinium. Dose enhancement factor of 1.085-1.120 folds in aurum, 1.047-1.091 folds in gadolinium was shown. In addition, it showed a decrease of 95% modulation range and practical range. This may lead to an uncertain dose in the tumor tissue as well as dose enhancement. Therefore, it is necessary to make appropriate corrections for spread out Bragg-peak and practical range from mass stopping power. It is expected that Monte Carlo simulation for dose enhancement will be used as basic data for in-vivo and in-vitro experiments.

Linear Energy Transfer Dependence Correction of Spread-Out Bragg Peak Measured by EBT3 Film for Dynamically Scanned Proton Beams

  • Lee, Moonhee;Ahn, Sunghwan;Cheon, Wonjoong;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.135-144
    • /
    • 2020
  • Purpose: Gafchromic films for proton dosimetry are dependent on linear energy transfers (LETs), resulting in dose underestimation for high LETs. Despite efforts to resolve this problem for single-energy beams, there remains a need to do so for multi-energy beams. Here, a bimolecular reaction model was applied to correct the under-response of spread-out Bragg peaks (SOBPs). Methods: For depth-dose measurements, a Gafchromic EBT3 film was positioned in water perpendicular to the ground. The gantry was rotated at 15° to avoid disturbances in the beam path. A set of films was exposed to a uniformly scanned 112-MeV pristine proton beam with six different dose intensities, ranging from 0.373 to 4.865 Gy, at a 2-cm depth. Another set of films was irradiated with SOBPs with maximum energies of 110, 150, and 190 MeV having modulation widths of 5.39, 4.27, and 5.34 cm, respectively. The correction function was obtained using 150.8-MeV SOBP data. The LET of the SOBP was then analytically calculated. Finally, the model was validated for a uniform cubic dose distribution and compared with multilayered ionization chamber data. Results: The dose error in the plateau region was within 4% when normalized with the maximum dose. The discrepancy of the range was <1 mm for all measured energies. The highest errors occurred at 70 MeV owing to the steep gradient with the narrowest Bragg peak. Conclusions: With bimolecular model-based correction, an EBT3 film can be used to accurately verify the depth dose of scanned proton beams and could potentially be used to evaluate the depth-dose distribution for patient plans.

The Predictive Factors of the Serum Creatine Kinase Level Normalization Time in Patients with Rhabdomyolysis due to Doxylamine Ingestion (독시라민 중독으로 발생한 횡문근융해증 환자에게서 혈중 크레아틴인산활성화효소 수치가 정상화되는 시기를 예측할 수 있는 인자)

  • Shin, Min-Chul;Kwon, Oh-Young;Lee, Jong-Suk;Choi, Han-Sung;Hong, Hoon-Pyo;Ko, Young-Gwan
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.7 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • Purpose: Doxylamine succinate (DS) is frequently used to treat insomnia and it may induce rhabdomyolysis in the overdose cases. The purpose of this study is to evaluate the factors that can predict the serum creatine kinase (CK) level normalization time for patients with rhabdomyolysis due to DS ingestion. Methods: This study was conducted on 71 patients who were admitted with rhabdomyolysis after DS ingestion during the period from January 2000 to July 2009. Rhabdomyolysis was defined as a serum CK level over 1,000 U/L. The collected data included the general characteristics, the anticholinergic symptoms, the ingested dose, the peak serum CK level, the time interval (TI) from the event to the peak CK level and the TI from the event to a CK level below 1,000 U/L. We evaluated the correlation between the patients' variables and the TI from the event to the peak CK level time and the time for a CK level below 1,000 U/L. Results: The mean ingested dose per body weight (BW) was $30.86{\pm}18.63\;mg/kg$ and the mean TI from the event to treatment was $4.04{\pm}3.67$ hours. The TI from the event to the peak CK level was longer for the patients with a larger ingestion dose per BW (r=0.587, p<0.05). The CK normalization time was longer for the patients with a larger ingested dose per BW (r=0.446, p<0.05) and a higher peak CK level (r=0.634, p<0.05). Conclusion: The ingested dose per BW was correlated with the TI from the event to the peak CK level, and the ingested dose per BW and the peak CK level have significant correlations with the CK normalization time. These factors may be used to determine the discharge period of patients who had rhabdomyolysis following a OS overdose.

  • PDF

The Dielectric Properties due to the Temperature and Applied Voltage of Oriented Polypropylene Film Irradiated by $^{60}/Co-${\gamma}$$ ($^{60}/Co-${\gamma}$$선으로 조사된 이축연신 폴리프로필렌 필림의 온도 및 전압에 따른 유전특성)

  • 홍진웅;이수원;김왕곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1994
  • In this paper, It is studied that the variation of the dielectric absorption of the specimen according to the change with $^{60}$ Co-${\gamma}$ ray irradiation dose of the influence of temperature and applied voltage. In order to investigate the effect of irradiated oriented polypropylene film, we have observed dielectric properties within the temporature range of 30~130 ($^{\circ}C$) and voltage range of 100~250 (V). As for the dependency of temperature by tan $\delta$, the $\alpha$ peak which appears at high temperature increases accordingly to the increment of irradiation dose which is contributed by the crystal region and moves towards the high temperature. The $\beta$ peak which appears the orientation by dipoles and molecular motions in the amorphous region at low temperature. For the dependency of voltage by tan $\delta$ at low temperature, the peak of the tan $\delta$ shifts accordingly to the increment of irradiation dose towards the high temperature region.

  • PDF

Bragg-curve simulation of carbon-ion beams for particle-therapy applications: A study with the GEANT4 toolkit

  • Hamad, Morad Kh.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2767-2773
    • /
    • 2021
  • We used the GEANT4 Monte Carlo MC Toolkit to simulate carbon ion beams incident on water, tissue, and bone, taking into account nuclear fragmentation reactions. Upon increasing the energy of the primary beam, the position of the Bragg-Peak transfers to a location deeper inside the phantom. For different materials, the peak is located at a shallower depth along the beam direction and becomes sharper with increasing electron density NZ. Subsequently, the generated depth dose of the Bragg curve is then benchmarked with experimental data from GSI in Germany. The results exhibit a reasonable correlation with GSI experimental data with an accuracy of between 0.02 and 0.08 cm, thus establishing the basis to adopt MC in heavy-ion treatment planning. The Kolmogorov-Smirnov K-S test further ascertained from a statistical point of view that the simulation data matched the experimentally measured data very well. The two-dimensional isodose contours at the entrance were compared to those around the peak position and in the tail region beyond the peak, showing that bone produces more dose, in comparison to both water and tissue, due to secondary doses. In the water, the results show that the maximum energy deposited per fragment is mainly attributed to secondary carbon ions, followed by secondary boron and beryllium. Furthermore, the number of protons produced is the highest, thus making the maximum contribution to the total dose deposition in the tail region. Finally, the associated spectra of neutrons and photons were analyzed. The mean neutron energy value was found to be 16.29 MeV, and 1.03 MeV for the secondary gamma. However, the neutron dose was found to be negligible as compared to the total dose due to their longer range.

The Dielectric Properties of OPP film due to Irradiation Aging (방사선 열화에 따른 이축연신 폴리프로필렌 필름의 유전특성)

  • 오세원;조경순;김용주;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.80-84
    • /
    • 1993
  • In this research, we studied the variation of the dielectric loss absorption of the dielectric loss absorption of the sample according with the change to $\^$60/Co-${\gamma}$-ray irradiation dose of the influence of temperature and applied voltage. In order to investigate the effect of irradiation oriented polypropylene film, we have observed dissipation factor within the temperature range of 30∼130 [$^{\circ}C$] and voltage range of 100∼250$^{\circ}C$ [V]. As for the dependency of temperature by dissipation factor, the ${\alpha}$-peak which appears at high temperature increases accordingly to the increasement of irradiation dose which is contributed by the crystal region and moves towards the high temperature. The ${\beta}$-peak which appears at low temperature is origined from dipoles and molecular motions in the amorphous region. As for the dependency of voltage by tan$\delta$, at low temperature the peak of the tan$\delta$, at low temperature the peak of the tan$\delta$ shifts accordingly to the increasement of irradiation dose towards the high temperature region.

  • PDF