• Title/Summary/Keyword: Peak current density

Search Result 239, Processing Time 0.041 seconds

Effect of Pulse Plating on the Hardness and Ductility of Electroplated Fe-C (펄스전류에 의해 제조된 Fe-C 도금층의 경도 및 인성에 대한 연구)

  • 오영주;하헌필;변정수
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2002
  • Fe-C alloy layers were produced by pulse plating and the properties were compared with those produced by D.C. plating. When the pulse on time ($T_{on}$ ) was the same, both the duty cycle and peak current density($I_{p}$ ) had little influence on the carbon content and the hardness of the layer. The structure and hardness of the direct current plating were similar to those of the pulse current plating. However, the ductility was enhanced when the pulse current was applied due to the release of residual stress during the pulse off time($T_{off}$).).

Effect of Current Density on the Crystal Structure of Ni-W Alloys Prepared by Electrodeposition (Ni-W 합금도금의 결정구조에 미치는 전류밀도의 영향)

  • Kim, Won-Baek;Lee, Cheol-Gyeong;Lee, Jae-Cheon;Seo, Chang-Yeol
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.898-904
    • /
    • 1998
  • Ni-W alloys containing 10 to 50wt% W were prepared by electrodeposition. Tungsten content in the alloy increased with current density. X-ray diffraction analysis revealed that the alloy was crystalline phase when deposited at current densities lower than 50mA/${cm}^2$. Their crystal structure transformed to amorphous at higher current densities. In terms of tungsten content, the crystal -+ amorphous transition occurred at 40-46wt% which was identified by the 3 fold increase in the width of a diffraction peak. The lattice parameter of crystalline phase increased with W upto 40wt% which is higher than the solubility limit of W (about 30wt%) in Ni. Therefore, the alloys are considered to be Ni solid solution supersaturated with W. The amorphous Ni-W alloys were recrystallized by annealing them at temperatures over $400^{\circ}C$. This was evidenced by the appearance a strong [ 11 11 annealing texture. The supersaturated W was precipitated during the annealing at over $800^{\circ}C$. The current-density dependence of W content and crystallinity was utilized to produce alternating layers of crystalline (30wt% W) and amorphous (50wt%) phases which may exhibit unique mechanical and corrosion properties.

  • PDF

Study of the Al-coating on the STS 316L Stainless Steel by Pulse Plating in the Molten Salts at Room Temperature (펄스 도금법을 이용한 STS 316L 스테인리스강 상의 저온 염욕 알루미늄 코팅에 관한 연구)

  • 정세진;조계현
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.17-32
    • /
    • 2002
  • Electroplating methods by molten salts and non-aqueous melts were employed for aluminium coating on STS 316L stainless steel. After coated with Ni or non-coated surface on stainless steel, Al pulse plating was carried out in two different types of electrolytes at room temperature. The Al layer from $AlCl_3$-TMPAC melts could not obtain appreciable thickness for engineering application due to chemical reactions between deposits and moisture of air. However, The Al coating by pulse plating in the Ethylbenzene-Toluene-$AlBr_3$ systems was found to be solid coating layer with a few $\mu\textrm{m}$ scale. The conductivity of Ethylbenzene-Toluene-$AlBr_3$ electrolyte was as functions of time and agitation. By seven days exposure after mixing of the electrolyte, Al-deposited layer shows uniform and near by pore-free with high current density (higher than 30mA/$\textrm{cm}^2$). The roughness and imperfection of coating layer were decreased with a increasing agitation speed. It was found that the optimum condition for the Al pulse plating on the 316L stainless steel was a 400mA peak current, duty cycle, $t_{on}$ $t_{ off}$=3ms/1ms, and a current density of 30mA/$\textrm{cm}^2$.

The Fabrication of PVDF Organic Thin Films by Physical Vapor Deposition Method and Their Electrical Conductivity Phenomena (진공증착법을 이용한 PVDF 유기박막의 제조와 전기전도현상)

  • 임응춘;이덕출
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.217-225
    • /
    • 1997
  • In this study, the PVDF organic thin film was fabricated by the physical vapor deposition method to be dry-process. The distance of heat source and substrate was 5[cm] and the temperature of substrate was 30[.deg. C], when the pressure had reached 2.0 x 10$^{-5}$ [Torr], the temperature of heat source was reached to 285[.deg. C] to heat at 6-8[.deg. C/min] rate, the shutter was opened and deposition was started. TG-DTA(Thermogravimetric-Differential Thermal Analysis) spectrum of PVDF pellets showed that endothermic peak arose at 170[.deg. C] and exothermic peak at 524[.deg. C], but that of thin PVDF film showed that endothermic peak arose at 145[.deg. C] and exothermic peak at 443[.deg C]. The current density was increased linearly with increasing voltage but increased nonlinearly with higher electric field than 250[kV/cm] and activation energy was about 0.667[eV] at the temperature of 30-90[.deg. C].

  • PDF

Enhancement of Thermal Stability in Photoluminescence by Carbonization of Porous silicon (다공성실리콘의 탄화를 이용한 PL의 열적안정성 증진)

  • 최두진;서영제;전희준;박홍이;이덕희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.467-472
    • /
    • 1997
  • Porous silicon was prepared by an anodic etching. The pore size was about 10 nm at an etching time of 20 sec and a current density of 20 mA/$\textrm{cm}^2$. The porous layer was composed of an micro-porous layer (0.6 ${\mu}{\textrm}{m}$) and a macro-porous layer (10 ${\mu}{\textrm}{m}$). Room temperature PL with maximum peak 6700$\AA$ appeared. The peak disappeared by an oxidation reaction when the porous silicon was heated to 100~20$0^{\circ}C$ in atmosphere. In order to avoid the oxidation a heat treatment was done in H2 atmosphere. The micro-pore and Si column, which formed quantum well, were collapsed by the high temperature. The PL maximum peak of heated sample was gradually red-shifted and showed about 300$\AA$ red-shift at 50$0^{\circ}C$. The intensity of PL was maintained to high temperatures in lower pressures. The porous Si was carbonized in C2H2+H2 gas in order to increase thermal stability. The carbonization of the porous Si prevented red-shift of the maximum PL peak caused by sintering effect at high temperatures, and the carbonized porous Si showed Pl signal at higher temperatures by above 20$0^{\circ}C$ than the sample in H2 atmosphere.

  • PDF

A Study on Weighting Filter Considering Directivity in High Density Salt and Pepper Noise (고밀도 Salt and Pepper 잡음 환경에서 방향성을 고려한 가중치 필터에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.925-928
    • /
    • 2015
  • The application fields of the image processing get gradually diversified as the society develops to the highly leveled digital information era and is highlighted as an important field. Especially, many studies on image restoration, a key technology in the image processing have been carried out. This paper proposed a filter which applies the directivity and spatial weighting based on the degraded pixels in order to restore the image degraded in the high density salt and pepper noise environment. In addition, this paper compared this filter with the current methods for objective judgment using PSNR(peak signal to noise ratio) as a criterion of judgment.

  • PDF

Effects of Pulse-Reverse Current on Purity of Deposit in Electrowinning of Cobalt (코발트 전해채취 시 전착물 순도에 미치는 Pulse-Reverse Current의 영향)

  • Han, Jung Min;Lee, Jung Hoon;Kim, Yong Hwan;Jung, Uoo Chang;Chung, Won Sub
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1014-1020
    • /
    • 2010
  • In order to improve the purity on deposit in cobalt electrowining, a fundamental study using Pulse-Reverse Current (PRC) was carried out. Based on a sulfate solution, Cu, Ni, and Fe as impurities were added during cobalt electrowinning. There were four reverse waveforms and frequency conditions from 1 Hz to 10 kHz, and the purity of each condition was compared with the Direct Current (DC) purity. From the results, it was found that the anodic potential induced by reverse current affects selective dissolution of impurities. In this work, the case of the highest reverse peak current density ($I_r$) with a short reverse time ($t_r$) at 100 Hz showed a higher purity than that of the DC. This PRC condition also showed only a 4% low current efficiency comparable to the DC. We concluded that an optimized PRC for cobalt electrowinning could improve the purity with little loss of current efficiency.

Low Voltage-Driven CNT Cathode and It's Applications

  • Lee, Chun-Gyoo;Lee, Sang-Jo;Cho, Sung-Hee;Chi, Eung-Joon;Lee, Byung-Gon;Jeon, Sang-Ho;Ahn, Sang-Hyuck;Hong, Su-Bong;Choe, Deok-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.851-854
    • /
    • 2004
  • By approaching the counter electrode to the CNT emitter, remarkable reduction of the cathode operating voltage has been accomplished in the under-gate CNT cathode structure. The peak emission current density of 2.5 ms/$cm^2$, which is sufficient for high brightness CNT field emission display, was obtained at the cathode-to-gate voltage of 57 V when the CNT-to-counter electrode gap was 2.2 ${\mu}m$. The gate current was less than 10 % of the anode current. The CNT cathode with low driving voltage can help the cost-effective field emission display implemented.

  • PDF

Analysis of the Resonant Tunneling in an AlGaAs/GaAs Single Quantum Well Structure by an Airy Function Approach (AlGaAs/GaAs 단일양자 우물 구조에서 Airy 함수를 이용한 공명터널링 현상에 관한 고찰)

  • 김성진;이경윤;이헌용;성영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.19-24
    • /
    • 1992
  • The analysis of the resonant tunneling based on the exact solution of Schrodinger equations is performed in a single quantum well structure under applied bias. The transmittivity and the net tunneling current density are calculated with Airy function and the boundary conditions which is suggested by Bastard. The results are compared with those from other methods and boundary conditions. From the calculated J-V characteristics for the tunneling current, the dependence of the voltage location showing the first peak current on the various temperatures and Fermi level is investigated. In addition, the wave function within the structure is obtained and compared with that from the flat-potential model.

  • PDF

Internal PD Pulses Analysis Accompanying with Bush-type Tree in Solid Dielectrics (고체유전체에서 발생한 부시형 전기트리에 수반된 내부 부분방전 펄스 해석)

  • 강성화;홍현문;류부형
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.100-105
    • /
    • 2000
  • Correlation between propagation of bush-type electrical tree and internal partial discharges(PD) was discussed. We used specimens with needle-plane electrode system made of LDPE(Low Density Polyethylene), observed inception and propagation of electrical tree by optical microscope interfaced with computer and investigated characteristics of phase resolved PD pulses accompanying with propagation of electrical tree. Electrical tree generally growed bush-type tree. PD data detected and analyzed were average discharge current and statistical operator of q-n, $\psi$- $q_{avg}$, $\psi$-n, ${\psi}-q_{max}$ distribution. Parameters used were skewness, kurtosis, average discharge phase, cross-correlation factor, asymmetry and etc. In generally, average discharge current had good linear relationship with propagation of bush type electrical tree on this experiment. Peak discharge magnitude and repetition rate were increased, but they had not good linear relationship.p.

  • PDF