• Title/Summary/Keyword: Pd-$TiO_{2}$

Search Result 119, Processing Time 0.029 seconds

Effect of Bimetallic Pt-Rh and Trimetallic Pt-Pd-Rh Catalysts for Low Temperature Catalytic Combustion of Methane

  • Bhagiyalakshmi, Margandan;Anuradha, Ramani;Park, Sang-Do;Park, Tae-Sung;Cha, Wang-Seog;Jang, Hyun-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.120-124
    • /
    • 2010
  • Monometallic, bimetallic and trimetallic particles consisting of different weight compositions of Pt-Pd-Rh over pure alumina wash coats have been synthesized and their catalytic performance on methane conversion was studied from 150 to $600^{\circ}C$. Different catalyst formulations with variable Pt, Pd and Rh contents for bimetallic and trimetallic systems were tried and $Pt_{(1.5)}Rh_{(0.3)}/Al_2O_3$ and $Pt_{(1.0)}Pd_{(1.0)}Rh_{(0.3)}/Al_2O_3$ shows low $T_{50}$ and $T_{90}$ temperatures. Bimetallic and trimetallic particle synergism acts as three way catalysts and therefore, all the catalysts show 100% methane conversion. The effect of supports such as $ZrO_2$ and $TiO_2$ on methane combustion was investigated; from $T_{50}$ and $T_{90}$ results both $Al_2O_3$ and $ZrO_2$ are suitable supports for low temperature methane combustion.

Selective Oxidation of Hydrogen Over Palladium Catalysts in the Presence of Carbon Monoxide: Effect of Supports (Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과)

  • Kim, Eun-Jeong;Kang, Dong-Chang;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.121-129
    • /
    • 2017
  • Pd based catalysts were prepared by impregnating palladium precursor using incipient wetness method on $TiO_2$, $Al_2O_3$, $ZrO_2$, and $SiO_2$ and were applied for the selective oxidation of $H_2$ in the presence of CO. Their physicochemical properties were studied by X-ray diffraction (XRD), $N_2$-sorption, temperature programmed desorption of CO (CO-TPD) and (CO+$H_2O$)-TPD, temperature programmed reduction of CO (CO-TPR) and XPS a. The results of CO- and (CO+$H_2O$)-TPD showed the correlation between peak temperature of TPD and catalytic activities for $H_2$ and CO conversion. The $Pd/ZrO_2$ catalyst exhibited the highest conversion of $H_2$. The addition of $H_2O$ vapor promotes the conversion of $H_2$ and CO by inducing easy desorption of CO and $H_2$ in the competitive adsorption of $H_2O$, CO and $H_2$.

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

The Study of Sintering Behavior and Piezoelectric Properties in $Pd_{(1-x)}$$Cd_x$[(Mn, Sb), Zr, $Ti]O_3$ Ceramics ($Pd_{(1-x)}$$Cd_x$[(Mn, Sb), Zr, $Ti]O_3$ 세라믹스의 소결 거동 및 압전 특성에 대한 연구)

  • 나은상;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.395-401
    • /
    • 2000
  • In this study, we chose the basic composition which indicated the best electrical properties by change of x content(0, 0.05, 0.1, 0.15, 0.2, 0.25 mol respectively) in xPb(Mn1/3Sb2/3)O3-(1-x)Pb(Zr0.52Ti0.48)O3 ceramics. And we substituted Cd2+ for Pb2+ site, then observed the sintering behavior, microstructure and electrical propertties according to the various sintering temperature. The basic composition was the 0.05PMS-0.95PZt, and it showed single perovskite phase and excellent properties. In case of Cd2+ substitution, we were able to sinter at 90$0^{\circ}C$ which was lower than conventional sintering temperature(1200~130$0^{\circ}C$). Especially, when the 2mol% substituted PMS-PZT specimens were sintered at 90$0^{\circ}C$ for 2h, we obtained the p=7.6g/㎤, kp=56%, Qm=520 and made sure of a position of Cd2+ substitution by observing lattice parameter, phase transition temperature. From this results, we could infer that because Cd2+ substituted fro A-site, low temperature sintering of Cd2+ substituted PMS-PZT without any loss of electrical properties shows its applicability for the piezoelectric ceramic transformer.

  • PDF

Optimum dimensionally stable anode with volatilization and electrochemical advanced oxidation for volatile organic compounds treatment (전극의 부반응 기포발생에 따른 휘발특성과 전기화학고도산화능을 동시에 고려한 휘발성 유기화합물 처리용 최적 불용성전극 개발)

  • Cho, Wan-Cheol;Poo, Kyung-Min;Lee, Ji-Eun;Kim, Tae-Nam;Chae, Kyu-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, $IrO_2/Ti$, $IrO_2/Ti$, and $IrO_2-Ru-Pd/Ti$. EAOP was operated under same current density ($25mA/cm^2$) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the $IrO_2-Ru/Ti$ anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by $IrO_2-Ru/Ti$, 90.2% by $IrO_2-Ru-Pd/Ti$, 78% by $IrO_2/Ti$, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the $IrO_2-Ru/Ti$ anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.

The Effect of CO in the Flue Gas on $H_2$ SCR (배가스 중 CO가 $H_2$ SCR 반응에 미치는 영향 연구)

  • Kim, Sung-Su;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.391-395
    • /
    • 2010
  • This study presents the effect of CO in flue gas on the $H_2$ SCR by Pt/$TiO_2$ catalyst. Coexisting CO which has characteristics of competitive adsorption with $H_2$ as a reductant on the active sites showed the decrease of catalytic activity. Competitive adsorption with NO, CO and $H_2$ also caused the reduction of activity and $H_2$, CO slip simultaneously. With increasing the inlet CO concentration, such phenomenon became more pronounced. Adding $PdO_2$ and $CeO_2$ on the catalyst to avoid the inhibition by coexisting CO, $CeO_2$ added catalyst exhibited the durability against CO which fed 100 ppm under.

First Principles Calculations on Electronic Structure and Magnetism of Transition Metal Doped ZnO (전이금속이 도핑된 ZnO의 전자구조와 자성에 대한 제일원리계산)

  • Yun, Sun-Young;Cha, Gi-Beom;Hong, Sun-C.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • In this study we investigate the electronic structure and magnetism of transition metal (TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag ) deped ZnO($TM_{0.25}Zn_{0.75}O$), which are expected to have Curie temperature. Full-potential Linearized Augmented Plane Wave(FLAPW) metod is adopted with exchange-correlation potential expressed as general gradient approximation(GGA). The calculated magnetic moments of ($TM_{0.25}Zn_{0.75}O$) are 0.83, 3.03, 4.03, 3.48, 2.47, 1.56, 0.43, 0.75, 0.01 ${\mu}_B$ for TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag, respectively. The nearest neighbor O atom to the transition metal is calculated to have a significant magnetic moment of about 0.1${\mu}_B$, ?? 새 strong hybridization between O-p and TM-d bands. As the results, the systems may have larger magnetic moments in total, compared to the corresponding isolated atoms. The 3d TM doped systems exhibit the half-metallic character except Co, wheres the 4d TM doped systems behave like normal metals and low spin polarization at the Fermi levels.

Factors influencing a Photocatalytic System in Circulating Batch Mode: Photocatalyst Dosage, DO, Retention Time and Metal Impurities (순환회분식 광촉매시스템의 영향인자 연구: 광촉매 주입량, 용존산소, 체류시간,전자포획 첨가금속)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • A selected halogenated organic contaminant, monochlorophenol was successfully degraded by photocatalytic reaction in a circulating batch system. The photocatalytic degradation in most cases follows first-order kinetics. The photocatalytic reaction rate increased in the $TiO_2$ dosage range of 0.1 g/L to 0.4 g/L, then decreased with further increase of the dosage. Also the degradation rate increased over the range of the retention time from 0.49 min. to 0.94 min., then decreased with further increase of the retention time in the circulating batch reactor. The photocatalytic activity was enhanced by addition of metal impurities, platinum(Pt) and palladium(Pd) onto the photocatalysts. The photocatalytic degradation rate increased with the increase of Pt and Pd in the content range of 0 to 2wt %, then decreased with further increase of the metal contents. Therefore the metal loading to $TiO_2$ influence the degradation rate of a halogenated organic compound by acting as electron traps, consequently reducing the electron/positive hole pair recombination rate.

The Performance of Photocatalyst filter for an Air Cleaner-Effect of novel metal (공기정화기용 광촉매 필터의 성능-귀금속 담지 영향)

  • Jang, Hyun-Tae;Kim, Jeong-Keun;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1284-1291
    • /
    • 2006
  • This work examined improving the activity of photocatalyts by novel metal doping for the degradation of volatile organic compounds, such as formaldehyde and acetone. The activity was determined with type of dopant novel metal and volatile organic compounds. The palladium-doped $TiO_2$ was found to be improved the decomposition of acetone. The photocatalytic degradation rate for acetone was increased with decreasing temperature to $45^{\circ}C$. The optmum temperature of photocatalytic degradation rate for formaldehyde was $75^{\circ}C$. The enhancement of reaction rate with novel metal were 1.0 wt.% of palladium for acetone, 1.0 wt.% of plaitnum for formaldehyde.

  • PDF