Browse > Article
http://dx.doi.org/10.11001/jksww.2013.27.1.49

Factors influencing a Photocatalytic System in Circulating Batch Mode: Photocatalyst Dosage, DO, Retention Time and Metal Impurities  

Kim, Il-Kyu (Department of Environmental Engineering, Pukyong National University)
Publication Information
Journal of Korean Society of Water and Wastewater / v.27, no.1, 2013 , pp. 49-58 More about this Journal
Abstract
A selected halogenated organic contaminant, monochlorophenol was successfully degraded by photocatalytic reaction in a circulating batch system. The photocatalytic degradation in most cases follows first-order kinetics. The photocatalytic reaction rate increased in the $TiO_2$ dosage range of 0.1 g/L to 0.4 g/L, then decreased with further increase of the dosage. Also the degradation rate increased over the range of the retention time from 0.49 min. to 0.94 min., then decreased with further increase of the retention time in the circulating batch reactor. The photocatalytic activity was enhanced by addition of metal impurities, platinum(Pt) and palladium(Pd) onto the photocatalysts. The photocatalytic degradation rate increased with the increase of Pt and Pd in the content range of 0 to 2wt %, then decreased with further increase of the metal contents. Therefore the metal loading to $TiO_2$ influence the degradation rate of a halogenated organic compound by acting as electron traps, consequently reducing the electron/positive hole pair recombination rate.
Keywords
monochlorophenol; photocatalytic degradation; metal impurities; $TiO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen D. and Ray A. K. (1999) "Photocatalytic kinetics of phenol and its derivatives over UV irradiated $TiO_{2}$", Applied Catalysis B: Environ., 23, 143-157   DOI   ScienceOn
2 Bamwenda G. R., Susumu T., Toshiko N. and Masatake H. (1995) "Photoassisted gydrogen production from a water-ethanol solution : a comparison of activities of Au-$TiO_{2}$ and Pt-$TiO_{2}$", J. Photochem. Photobio. A : Chem., 89, 177-189   DOI   ScienceOn
3 Barbara B., Cavicchioli A., Riva E., Zanoni L., Bignoli F. and Renato I. B. (1995) "Pilotplant- scale photodegradation of phenol in aqueous solution by photocatalytic membranes immobilizing titanium dioxide", Chemosphere, 30(10), 1861-1874   DOI   ScienceOn
4 Chen D. and Ray A. K. (1998) "Photodegradation kinetics of 4-nitrophenol in $TiO_{2}$ suspension", Wat. Res., 32(11), 3223-3234   DOI   ScienceOn
5 Hong S. H. (2001) Synthesis, Characterization and Photocatalytic Properties of Fe(III)-doped $TiO_{2}$, Korea University Master Thesis.
6 Choi W., Termin A. and Hoffmann M. R. (1994) "The role of metal ion dopants in quantum- sized $TiO_{2}$ : Correlation between photoreactivity and charge carrier recombination dynamics", J. Phys. Chem., 98, 13669-13679   DOI   ScienceOn
7 Crittenden J. C., Junbiao L., David W. H. and David L. P. (1997) "Photocatalytic oxidation of chlorinated hydrocarbons in water", Wat. Res. , 31(3), 429-438   DOI   ScienceOn
8 Gamil A., Saleh G. and Studnicki L. H. (2003) "Comparative photocatalytic degradation using natural and artificial UV-light of chlorophenol as a representative compound in refinery wastewater", J. Photochem. Photobio. A:Chem., 157, 103-109   DOI   ScienceOn
9 Hufschmidt D., Bahnemann D., Testa J. J., Emilio C. A. and Litter M. I. (2002) "Enhancement of the photocatalytic activity of various $TiO_{2}$ materials by platinisation", J. Photochem. Photobio. A : Chem., 148, 223-231   DOI   ScienceOn
10 Hussain A.-E. and Serpone N. (1988) "Kinetic studies in heterogeneous photocatalysts. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over $TiO_{2}$ supported on a glass matrix", J. Phys. Chem., 92, 5726-5731   DOI   ScienceOn
11 Hussain A.-E. and Serpone N. (1989) "Kinetic studies in heterogeneous photocatalysis. 2. $TiO_{2}$-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in airequilibrated aqueous media", Langmuir, 5, 250-255   DOI
12 Jung H. B., Kong I. C., Lee E. S. (1998) Characteristics of Reductive Dechlorination of Chlorophenols in Unacclimated and Acclimated Anaerobic Sludges, J. of KSEE, 20(9), pp1279-1286.
13 Kapoor M. P., Yuichi I., Koji K. and Yasuyuki M. (2003) "Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide", J. Molecular Catalysis A: Chem., 198, 303-308   DOI   ScienceOn
14 Jung K.-S. and Lee H. I. (1997) "Photocatalysis and its application", J. Korean Chemical Society, 41(12), 682-710
15 Jung Y. K., Kim J. O. (1994) Degradation of Phenol by "$TiO_{2}$ Ceramic Membrane+UV+$H_2O_2$"AOP, J. Korean Society of Civil Engineers, 14(3), pp645-654.
16 Ku Y., Leu R.-M. and Lee K.-C. (1996), " Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide", Wat. Res., 30(11), 2569-2578   DOI   ScienceOn
17 Kang J. W. (1999) AOT : Advanced Oxidation Technology for Application of Water Treatment, Chemistry World, 39(6), pp35-50.
18 Kim I. -K., Huang C. P. and Chiu P. C.(2001), "Sonochmical decomposition of dibenzothiophene in aqueous solution", Wat. Res., 24(18), 4370-4378
19 Kim J. M., Lee S. W., Lee J. S., Park J. W., Shim J. W. (2003) A Study on Kinetic Adsorption of P-chlorophenol by Activated Carbons, Applied Chemistry, 7(1), pp285-288.
20 Lee H. S., Kim K. H., Kang S. K., Lee W. M. (2004) R&D Trend and Information Analysis of Nano Semiconductor Photocatalyst, Prospectives of Industrial Chemistry, 7(2), pp27-39.
21 Li F. B. and Li X. Z. (2002) "The enhancement of photodegradation efficiency using Pt-$TiO_{2}$ catalyst", Chemosphere, 48, 1103-1111   DOI   ScienceOn
22 Li W., Shah S. I., Huang C. P., Jung O. J. and Ni C. (2002) "Metallorganic chemical vapor deposition and characterization of $TiO_{2}$ nanoparticles", Mater. Sci. Engine., B96, 247-253
23 Linsebigler A. L., Lu G. and Yates, Jr. J. T. (1995) "Photocatalysis on $TiO_{2}$ surfaces : Principles, Mechanisms and Selected Results", Chem. Rev., 95, 735-758   DOI   ScienceOn
24 Matthews R. W. (1987) "Photooxidation of organic impurities in water using thin films of titanium dioxide", J. Phys. Chem., 91, 3328-3333   DOI
25 Ryu J. , Kim H. K., Won S. H., Hwang S. M., Kim S. M., Kim N. G. (2003) Liquid-phase Adsorption Equilibrium Characteristics of p-Chlorophenol and 2,4-Dichlorophenol by Synthetic Polymeric Resin Adsorbents, J. Korean Ind. Eng. Chem., 14(5), pp650-656.
26 Moonsiri M., Rangsunvigit P., Chavadej S. and Gulari E. (2004) "Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products", Chem. Engine. J., 97, 241-248   DOI   ScienceOn
27 Prashant K. and Meisel D. (2002) "Nanoparticles in advanced oxidation processes", Current Opinion in Colloid & Interface Science, 7, 282-287   DOI   ScienceOn
28 Pyo M. K. (2002), Photodegradation of 4-Chlorophenol with Mn-doped $TiO_{2}$ Photocatalysts, Korea University Master Thesis.
29 Sclafani A. and Herrmann J. M. (1996) "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms in pure liquid organic phases and in aqueous solutions", J. Phys. Chem., 100, 13655-13661   DOI   ScienceOn
30 Shin H. O., Cho Y. H., Kwon O. S. (1997) Characterization of Anaerobic Degradation of Chlorophenols by the Anaerobic Sludges and Leachates, J. KSWQ, 13(2), pp155-164.
31 Yue B., Zhou Y., Xu J., Wu Z., Zhang X., Zou Y. and Jin S. (2002) "Photocatalytic degradation of aqueous 4-chlorophenol by silicaimmobilized polyoxometalates", Environ. Sci. Technol., 36, 1325-1329   DOI   ScienceOn
32 Theurich J., Lindner M., and Bahnemann D. W. (1996) "Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions : A Kinetic and Mechanistic Study", Langmuir, 12, 6368-6376   DOI   ScienceOn
33 Zhang T., Toshiyuki O., Satoshi H., Hisao H., Jincai Z. and Serpone N. (2002) "Photocatalyzed N-demothylation and degradation of methylene blue in titania dispersions exposed to oncentrated sunlight", Sol. Energy Mater. & Sol. Cell., 73, 287-303   DOI   ScienceOn
34 Vinodgopal K., Stafford U., Gray K. A., and Kamat P. V. (1994) "Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized $TiO_{2}$ particulate films", J. Phys. Chem,. 98, 6797-6803   DOI   ScienceOn
35 Wu C., Deng X., Hua W. and Gao Z. (2004) "Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations", Catal. Today, 94, 863-869
36 Zang L., Macyk W., Lange C., Maier W. F., Antonius C., Meissner D. and Kisch H. (2000), "Visible-light detoxification and charge gereration by transition metal chloride modified titania", Chem. Eur. J., 6(2), 379-384   DOI
37 Zhang T., Toshiyuki O., Satoshi H., Jincai Z., Serpone N. and Hidaka H. (2003) "Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives", Applied Catalysis B : Environ., 42, 13-24   DOI   ScienceOn
38 Nam W., Kim J. and Han G. (2002) "Photocatalytic oxidation of methyl orange in a threephase fluidized bed reactor", Chemophere, 47, 1019-1024   DOI   ScienceOn